5. Fourier Transform and Spectrum Analysis
5. Fourier Transform and Spectrum Analysis

Spectrum of Non-periodic Signals

- Fourier series help us to find the spectrum of periodic signals
 ![Fourier Series Example]

- Most signals are not periodic
 - Speech, audio, etc.
 ![Non-periodic Signal Example]

- Need another tool to find the spectrum of non-periodic (aperiodic) signals
 ⇒ Fourier Transform
Fourier Transform of Discrete-time Signals

- Let $x(t)$ be an aperiodic continuous-time signal, $x[n]$ is the samples of $x(t)$ such that:
 \[x[n] = x(nT_s) \]
- The spectrum of $x[n]$ is given by:
 \[X_p(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega nT_s} \text{ or } X_p(\hat{\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\hat{\omega}n} \]
Aperiodic Signals have Periodic Spectrum

• It is interesting to note that $X_p(\omega)$ is periodic since

$$X_p(\hat{\omega} + 2\pi k) = \sum_{n=-\infty}^{\infty} x[n] e^{-j(\hat{\omega} + 2\pi k)n}$$

$$= \sum_{n=-\infty}^{\infty} x[n] e^{-j\hat{\omega}n} e^{-j2\pi nk} = X_p(\hat{\omega})$$
Signal Processing Fundamentals – Part I
Spectrum Analysis and Filtering

5. Fourier Transform and Spectrum Analysis

\[X_p(\hat{\omega}) \]

\[\hat{\omega} = \omega T_s \]
• If \(x(t) \) has a spectrum of \(X(\omega) \) and \(x[n] = x(nT_s) \) has a spectrum of \(X_p(\omega) \), it can be shown that

\[
X_p(\hat{\omega}) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X(\hat{\omega} + 2\pi k) \quad -\infty \leq \omega \leq \infty
\]

\[
= \ldots + \frac{1}{T_s} X(\hat{\omega} - 2\pi)
\]

\[
+ \frac{1}{T_s} X(\hat{\omega})
\]

\[
+ \frac{1}{T_s} X(\hat{\omega} + 2\pi) + \ldots
\]
Ideal low pass filter

Time Domain

Frequency Domain

Ideal low pass filter

\[\hat{\omega} = \omega T_s \]
5. Fourier Transform and Spectrum Analysis

Time Domain

- $x(t)$
- $x[n]$

Frequency Domain

- $X(\omega)$
- $X_p(\hat{\omega})$

- $\hat{\omega} = \omega T_s$
- $\hat{\omega} = \omega T_s$

ω vs. t

ω vs. ω
5. Fourier Transform and Spectrum Analysis

Time Domain

\[x(t) \]

\[x[n] \]

\[x'(t) \]

Frequency Domain

\[X(\omega) \]

\[X_p(\hat{\omega}) \]

\[X'(\omega) \]

\[\hat{\omega} = \omega T_s \]
• If the signal has frequency components beyond $|\pi|$, after sampling, these frequency components will affect the other replicas in the spectrum.

• Even with an ideal low pass filter, the original signal cannot be reconstructed. This is the so-called alias effect.

• Restate the Shannon Sampling Theorem for general aperiodic signals:

$$\hat{\omega} \leq |\pi| \Rightarrow 2\pi f_{\text{max}} T_s \leq |\pi|$$

$$\Rightarrow 2\pi f_{\text{max}} \leq |\pi f_s| \text{ or } f_s \geq 2f_{\text{max}}$$
A continuous-time aperiodic signal \(x(t) \) with frequencies no higher than \(f_{\text{max}} \) can be reconstructed exactly from its samples \(x[n] = x(nT_s) \) if the samples are taken at a rate \(f_s = 1/T_s \) that is greater than \(2f_{\text{max}} \).
Real Examples

Time Domain

Frequency Domain

Resulted signal

Ideal low pass filter
5. Fourier Transform and Spectrum Analysis

Time Domain

Frequency Domain

Resulted signal

Ideal low pass filter
Signal Processing Fundamentals – Part I
Spectrum Analysis and Filtering

5. Fourier Transform and Spectrum Analysis

Time Domain

Frequency Domain

Resulted signal

Ideal low pass filter
5. Fourier Transform and Spectrum Analysis

How to Solve Aliasing Problems?

1. Increase the sampling rate such that \(f_s \geq 2f_{\text{max}} \)

2. Use anti-aliasing filter first

Pre-filter the input signal such that it will never has frequency components beyond \(|\pi|\)
5. Fourier Transform and Spectrum Analysis

Time Domain

- $x(t)$
- $x[n]$
- $0 \rightarrow T_s^n$

Frequency Domain

- $X(\omega)$
- $-B \rightarrow 0 \rightarrow B$
- $X_p(\hat{\omega})$
- $-2\pi \rightarrow 0 \rightarrow 2\pi$

$\hat{\omega} = \omega T_s$

Anti-aliasing filter
With anti-aliasing filter

Ideal low pass filter

Without anti-aliasing filter

Ideal low pass filter

Look better
Hear the effect!

Original 44.1kHz sampling

8kHz sampling with aliasing

8kHz sampling with anti-aliasing filter
Discrete Fourier Transform

- Spectrum of aperiodic discrete-time signals is periodic and continuous
- Difficult to be handled by computer
- Since the spectrum is periodic, there’s no point to keep all periods – one period is enough
- Computer cannot handle continuous data, we can only keep some samples of the spectrum
- Interesting enough, such requirements lead to a very simple way to find the spectrum of signals

⇒ Discrete Fourier Transform
• Recall the Fourier transform of an aperiodic discrete sequence

\[X_p(\hat{\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\hat{\omega}n} \]

• Assume \(x[n] \) is an aperiodic sequence with \(N \) values, i.e. \(\{x[n] : n = 0, 1, ..., N-1\} \)

\[X_p(\hat{\omega}) = \sum_{n=0}^{N-1} x[n]e^{-j\hat{\omega}n} \]
If we are now interested only in N equally spaced frequencies of 1 period of the Fourier spectrum, i.e.

$$X[k] = X_p\left(\frac{k \cdot 2\pi}{N}\right) \quad k = 0, 1, \ldots, N - 1$$

If $N = 13$
Now if we want to compute the value of these N frequencies,

\[X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\left(\frac{k \cdot 2\pi}{T_s N}\right)nT_s} \]

\[W_{N}^{nk} = e^{-j2\pi nk / N} \]

\[= \sum_{n=0}^{N-1} x[n]e^{-jk \cdot 2\pi n / N} = \sum_{n=0}^{N-1} x[n]W_{N}^{nk} \]

for \(k = 0, 1, \ldots, N-1 \)

Discrete Fourier Transform
5. Fourier Transform and Spectrum Analysis

- Discrete Fourier Transform (DFT) is exactly the output of the Fourier Transform of an aperiodic sequence at some particular frequencies.

- Inherently periodic since $X[k+N] = X[k]$, although we always only consider one period of $X[k]$.

\[
X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi nk/N}
\]

\[
X[k+N] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi n(k+N)/N}
\]

\[
= \sum_{n=0}^{N-1} x[n]e^{-j2\pi nk/N} e^{-j2\pi n} = X[k]
\]
• If we know $X[k]$, we can reconstruct back the signal $x[n]$ via the inverse discrete Fourier transform

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi nk / N}$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-nk} \quad \text{for } n = 0, 1, \ldots, N-1$$

Inverse Discrete Fourier Transform
It can be proven as follows:

\[
\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{jk2\pi n/N} = \frac{1}{N} \sum_{k=0}^{N-1} \sum_{m=0}^{N-1} x[m] e^{-jk2\pi m/N} e^{jk2\pi n/N}
\]

\[
= \frac{1}{N} \sum_{k=0}^{N-1} \sum_{m=0}^{N-1} x[m] e^{jk2\pi(n-m)/N}
\]

\[
= \frac{1}{N} \sum_{m=0}^{N-1} x[m] \left[\sum_{k=0}^{N-1} e^{jk2\pi(n-m)/N} \right]
\]

\[
= x[n] \quad \text{for} \quad n = 0, 1, \ldots, N - 1
\]
Although DFT gives exact frequency response of a signal, sometimes it may not give the desired spectrum.

Example

One period of $X_p(\hat{\omega})$

$X[k]$ if $N = 10$

So different from $X_p(\hat{\omega})$
• Need improved resolution

• Achieve by **padding zero** to the end of \(x[n] \) to make \(N \) bigger

\[
x[n] = \{1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ \ldots \ 0\}
\]

40 zeros
5. Fourier Transform and Spectrum Analysis

![Graph of |X(\omega)|](image)

![Graph of |X(\frac{2\pi k}{N})|](image)

\(N = 50\)
5. Fourier Transform and Spectrum Analysis

\[\left| X(\omega) \right| \]

\[\left| X\left(\frac{2\pi k}{N}\right) \right| \]

\(N = 100 \)
Exercise

Given that $x[n]$ is defined in the following figure, determine its spectrum using DFT with $N = 4$.