The parity check bits of a (7,4) linear block code are generated by
\[
\begin{align*}
 c_1 &= m_1 + m_2 + m_3 \\
 c_2 &= m_1 + m_2 + m_4 \\
 c_3 &= m_1 + m_3 + m_4 \\
\end{align*}
\]
where \(m_1, m_2, m_3 \) and \(m_4 \) are the message digits and the codeword is \([c_1, c_2, c_3, m_1, m_2, m_3, m_4]\).

(a) Find the generator matrix \(G \) and the parity check matrix \(H \) for this code.

(b) Find the error-correcting and detecting capabilities of this code.

(c) If there is an error in the \(i \)th bit of the received codeword, show that the syndrome is equal to the \(i \)th row of the transpose of the parity check matrix.

\[\text{Hint: Assume } e = [0 \ \cdots \ e_i \ \cdots \ 0] \text{ and show that } s = i \text{th row of the transpose of the parity check matrix.} \]

(d) If there is one error bit in the received codeword \([1001011]\), find the correct codeword using the result of part (c).

Please submit to your class representative by **10:30am, 7 October 2002**