Subject Description Form

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>EIE509</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Title</td>
<td>Satellite Communications – Technology and Applications</td>
</tr>
<tr>
<td>Credit Value</td>
<td>3</td>
</tr>
<tr>
<td>Level</td>
<td>5</td>
</tr>
<tr>
<td>Pre-requisite/ Co-requisite/ Exclusion</td>
<td>The students are expected to have some basic knowledge about digital communication systems. Extra materials will be provided for self-learning before the commencement of the course on request for those who do not have the appropriate knowledge. Please contact the subject lecturer for details.</td>
</tr>
</tbody>
</table>

Objectives

This subject will introduce students with the conventional and advanced technologies used in satellite communication systems. The students will study the design parameters of the transceiver on the performance of the link quality. Various multiple access techniques and resource allocation strategies will be compared to point out their relative merits and demerits. The multibeam and regenerative satellites networks, which render the use of small size earth station terminals possible, will also be discussed. Examples on global mobile satellite services will be given.

Intended Learning Outcomes

Upon completion of the subject, students will be able to:

1. **Professional/academic knowledge and skills**
 a. Understand and describe the basic theories and principles in satellite communication systems.
 b. Analyze, design, and evaluate satellite communication systems.

2. **Attributes for all-roundedness**
 c. Communicate effectively.
 d. Think critically and creatively.
 e. Assimilate new technological development in related field.

Subject Synopsis/ Indicative Syllabus

1. **Introduction**
 Historical background of satellite technology development; organisation of a satellite communication system.

2. **Orbits**
 Overview of orbits; orbit dynamics and Kepler’s laws; relative movement of two point bodies; orbital parameters; Earth-satellite geometry.

3. **Link Analysis**
 Basic satellite link analysis; effect of rain on link performance.

4. **Multiple Access**
 Traffic routing; frequency division multiple access; time division multiple access; code division multiple access; fixed and on-demand assignment.

5. **Multibeam Satellite Networks**
 Advantages and disadvantages; transponder hopping; on-board switching; beam scanning; intersatellite links.

6. **Regenerative Satellite Networks**
 Transparent and regenerative repeaters; comparison of link budgets; on-board processing; effect on Earth stations.

7. **Global Mobile Satellite Services**
 GEO mobile satellite systems, Inmarsat.
The theories and applications of satellite communication systems will be described and explained in lectures. Techniques and parameters for evaluating satellite communication systems will be presented in tutorials. A site visit to a satellite earth station will further provide an opportunity for students to understand the various components of a commercial satellite communication system as well as the operations of the ground unit. Students will also be requested to study in detail some selected satellite communication systems, share their findings with other classmates through two presentations and write a report summarizing their findings.

<table>
<thead>
<tr>
<th>Teaching/Learning Methodology</th>
<th>Intended Subject Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>a b c d e</td>
</tr>
<tr>
<td>Tutorials</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Mini-project</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Site visit</td>
<td>✓ ✓ ✓</td>
</tr>
</tbody>
</table>

Assessment Methods in Alignment with Intended Learning Outcomes

<table>
<thead>
<tr>
<th>Specific assessment methods/tasks</th>
<th>% weighting</th>
<th>Intended subject learning outcomes to be assessed (Please tick as appropriate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Assignments/Tests</td>
<td>50%</td>
<td>a b c d e</td>
</tr>
<tr>
<td>2. Mini-project</td>
<td>50%</td>
<td>✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Explanation of the appropriateness of the assessment methods in assessing the intended learning outcomes:

Assignments and tests let students review the taught materials, do further reading for deeper learning and apply the learnt materials to solving common satellite communication system problems.

Mini-project requires the student to do further reading, search for information, keep abreast of current development, give presentations and write a report.

Student Study Effort Expected

Class contact:
- Lecture/Tutorial/Presentation 36 Hrs.
- Site visit 3 Hrs.

Other student study effort:
- Lecture: further reading, doing homework/assignment 30 Hrs.
- Mini-project: studying, writing a report, preparing two presentations 38 Hrs.

Total student study effort 107 Hrs.

Reading List and References

Text book:

Reference books:
<table>
<thead>
<tr>
<th>Others:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. IEEE Transactions and other journals.</td>
</tr>
</tbody>
</table>

June 2017