<table>
<thead>
<tr>
<th>Subject Code</th>
<th>EIE4100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Title</td>
<td>Computer Vision and Pattern Recognition</td>
</tr>
<tr>
<td>Credit Value</td>
<td>3</td>
</tr>
<tr>
<td>Level</td>
<td>4</td>
</tr>
<tr>
<td>Pre-requisite / Co-requisite / Exclusion</td>
<td>Nil</td>
</tr>
</tbody>
</table>

Objectives

1. To introduce students the fundamentals of image formation;
2. To introduce students the major ideas, methods, and techniques of computer vision and pattern recognition;
3. To develop an appreciation for various issues in the design of computer vision and object recognition systems; and
4. To provide the student with programming experience from implementing computer vision and object recognition applications.

Intended Subject Learning Outcomes

Upon completion of the subject, students will be able to:

Category A: Professional/academic knowledge and skills
1. Comprehend the fundamentals of image formation.
2. Comprehend the major ideas, methods, and techniques of image processing and computer vision.
3. Appreciate typical pattern recognition techniques for object recognition.
4. Implement basic image processing and computer vision techniques.
5. Develop simple object recognition systems.

Category B: Attributes for all-roundedness
6. Present ideas and findings effectively.
7. Think critically.
8. Learn independently.
9. Work in a team and collaborate effectively with others.

Subject Synopsis / Indicative Syllabus

Syllabus:

- **Image Formation and Image Models**
 - Radiometry; Sources, Shadows and Shading; Color; Cameras.

- **Early Vision with One Image**
 - Linear Filters; Edge Detection; Texture; Digital Libraries.

- **Early Vision with Multiple Images**
 - The Geometry of Multiple Views; Stereopsis.

- **Mid-Level Vision**
 - Segmentation and Fitting; Tracking with Linear Dynamic Models.

- **High-Level Vision**
 - Correspondence and Pose; Registration in Medical Imaging Systems.

- **Finding Templates Using Classifiers**
 - Classifiers; Building Classifiers from Class Histograms; Feature Selection; Artificial Neural Networks.

- **Category-Level Recognition**
 - Current Approaches to Object Recognition; Primitives and Object Recognition.
Teaching/Learning Methodology

Lectures:
1. fundamental principles and key concepts of the subject are delivered to students;
2. guidance on further readings, applications and implementation is given.

Tutorials:
1. supplementary to lectures and are conducted with a smaller class size;
2. students will be able to clarify concepts and to have a deeper understanding of the lecture material;
3. problems and application examples are given and discussed

Laboratory sessions:
1. students will make use of the software tools to construct simple computer vision applications

Mini-project:
1. students in groups of 3-4 are required to work on simple object recognition systems

Assessment Methods in Alignment with Intended Subject Learning Outcomes

<table>
<thead>
<tr>
<th>Specific Assessment Methods/Tasks</th>
<th>% Weighting</th>
<th>Intended Subject Learning Outcomes to be Assessed (Please tick as appropriate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Continuous Assessment (total: 45%)</td>
<td>45%</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>• Tests</td>
<td>20%</td>
<td>✔ ✔ ✔</td>
</tr>
<tr>
<td>• Mini-project</td>
<td>15%</td>
<td>✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔</td>
</tr>
<tr>
<td>• Lab exercises and lab report</td>
<td>10%</td>
<td>✔ ✔ ✔ ✔</td>
</tr>
<tr>
<td>2. Examination</td>
<td>55%</td>
<td>✔ ✔ ✔</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Student Study Effort Expected

Class contact (time-tabled):
- Lecture: 24 Hours
- Tutorial/Laboratory/Practice Classes: 15 hours

Other student study effort:
- Lecture: preview/review of notes; homework/assignment; preparation for test/quizzes/examination: 36 Hours
- Tutorial/Laboratory/Practice Classes: preview of materials, revision and/or reports writing: 30 Hours

Total student study effort: 105 Hours

Reading List and References

Recommended Textbook:
<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Last Updated</th>
<th>June 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared by</td>
<td>Prof. Kenneth Lam</td>
</tr>
</tbody>
</table>