<table>
<thead>
<tr>
<th>Subject Code</th>
<th>AP10005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Title</td>
<td>Physics I</td>
</tr>
<tr>
<td>Credit Value</td>
<td>3</td>
</tr>
<tr>
<td>Level</td>
<td>1</td>
</tr>
<tr>
<td>Pre-requisite/ Co-requisite/ Exclusion</td>
<td>Nil</td>
</tr>
</tbody>
</table>

Objectives

This course provides a broad foundation in mechanics and thermal physics to those students who are going to study science, engineering, or related programmes.

Intended Subject Learning Outcomes

Upon completion of the subject, students will be able to:

1. solve simple problems in single-particle mechanics using calculus and vectors;
2. solve problems in mechanics of many-particle systems using calculus and vectors;
3. define simple harmonic motion and solve simple problems;
4. explain the formation of acoustical standing waves and beats;
5. use Doppler’s effect to explain changes in frequency received.
6. explain ideal gas laws in terms of kinetic theory;
7. apply the first law of thermodynamics to simple processes; and
8. solve simple problems related to the Carnot cycle.

Subject Synopsis/Indicative Syllabus

Mechanics:
- calculus-based kinematics, dynamics and Newton’s laws;
- calculus-based Newtonian mechanics, involving the application of impulse, momentum, work and energy, etc.;
- conservation law; gravitation field;
- systems of particles; collisions; rigid body rotation; angular momentum;
- oscillations and simple harmonic motion; pendulum; statics; longitudinal and transverse waves; travelling wave; Doppler effect; acoustics.

Thermal physics:
- conduction, convection and radiation; black body radiation and energy quantization; ideal gas and kinetic theory;
- work, heat and internal energy; first law of thermodynamics; entropy and the second law of thermodynamics; Carnot cycle; heat engine and refrigerators.

Teaching/ Learning Methodology

Lecture: Fundamentals in mechanics, waves and electromagnetism will be explained. Examples will be used to illustrate the concepts and ideas in the lecture. Students are free to request help. Homework problem sets will be given.

Student-centered Tutorial: Students will work on a set of problems in tutorials. Students are encouraged to solve problems and to use their own knowledge to verify their solutions before seeking assistance. These problem sets provide them opportunities to apply their knowledge gained from the lecture. They also help the students to consolidate what they have learned. Furthermore, students can develop a deeper understanding of the subject in relation to daily life phenomena or experience.

e-learning: In order to enhance the effectiveness of teaching and learning processes, electronic means and multimedia technologies would be adopted for presentations of lectures; communication between students and lecturer; delivery of handouts, homework and notices etc.
Assessment Methods in Alignment with Intended Learning Outcomes

<table>
<thead>
<tr>
<th>Specific assessment methods/tasks</th>
<th>% weighting</th>
<th>Intended subject learning outcomes to be assessed (Please tick as appropriate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Continuous assessment</td>
<td>40%</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>2. Examination</td>
<td>60%</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Continuous assessment:
The continuous assessment includes assignments, quizzes and test(s) which aim at checking the progress of students study throughout the course, assisting them in fulfilling the learning outcomes. Assignments in general include end-of-chapter problems, which are used to reinforce and assess the concepts and skills acquired by the students; and to let them know the level of understanding that they are expected to reach. At least one test would be administered during the course of the subject as a means of timely checking of learning progress by referring to the intended outcomes, and as means of checking how effective the students digest and consolidate the materials taught in the class.

Examination: This is a major assessment component of the subject. It would be a closed-book examination. Complicated formulas would be given to avoid rote memory, such that the emphasis of assessment would be put on testing the understanding, analysis and problem solving ability of the students.

Student Study Effort Expected

- **Class contact (time-tabled):**
 - Lecture: 33 Hours
 - Tutorial: 6 Hours

- **Other student study effort:**
 - Self-study: 81 Hours

Total student study effort: 120 Hours

Reading List and References

Last Updated

July 2015

Prepared by

AP Department