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Abstract
This paper proposes applying multi-task learning to train deep
neural networks (DNNs) for calibrating the PLDA scores of
speaker verification systems under noisy environments. To
facilitate the DNNs to learn the main task (calibration), sev-
eral auxiliary tasks were introduced, including the prediction
of SNR and duration from i-vectors and classifying whether
an i-vector pair belongs to the same speaker or not. The pos-
sibility of replacing the PLDA model by a DNN during the
scoring stage is also explored. Evaluations on noise contami-
nated speech suggest that the auxiliary tasks are important for
the DNNs to learn the main calibration task and that the uncali-
brated PLDA scores are an essential input to the DNNs. Without
this input, the DNNs can only predict the score shifts accurately,
suggesting that the PLDA model is indispensable.
Index Terms: Deep learning, speaker verification, score cali-
bration, multi-task learning, noise robustness

1. Introduction
Since 2011, i-vectors [1] together with probabilistic linear dis-
criminant analysis (PLDA) [2, 3] have been the state-of-the-art
methods for speaker verification. In 2014, the deep neural net-
work (DNN)-based i-vectors that incorporate phonetic informa-
tion [4] further improve speaker verification performance.

Because of its success, a lot of effort has been made to im-
prove the noise and duration robustness of the i-vector/PLDA
framework in recent years. For example, attempts have been
made to enhance and restore speech in the feature domain [5]
using factor analysis and in the spectral domain [6, 7] or i-
vector space [8, 9] using denoising autoencoders (DAE) [10].
Improving noise robustness of PLDA models is another direc-
tion. Hasan et al. [11] and Garcia-Romero et al. [12] trained a
PLDA model by pooling speech from multiple conditions, and
Li and Mak [13, 14] modeled the noise-level variability in utter-
ances by introducing an SNR factor and an SNR subspace into
the PLDA model. In [15], Mak et al. advocated that utterances
of different SNR levels will not only cause the i-vectors to fall
on different regions of the i-vector spaces but also change the
orientation of the speaker subspace. A mixture PLDA model
with mixture alignments determined by the SNR level of utter-
ances [15] or by their i-vectors [16] was then derived to model
the SNR-dependent i-vectors.

Observing that adverse acoustic conditions and duration
variability in utterances could have detrimental effect on PLDA
scores, a number of score calibration methods have been pro-
posed to compensated for the effect by modeling it as a shift in
the PLDA scores. While some of these methods only compen-
sate for the duration mismatch between the i-vector pair dur-
ing PLDA scoring [17, 18, 19], there are techniques also taking
the SNR mismatch into account [20, 21]. In [22], the shift is
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assumed to follow a Gaussian distribution with mean and vari-
ance dependent on the speech quality. On the other hand, the
score shift in [23, 24] is assumed to be simple functions (bi-
linear transformation and cosine distance) of the two quality
vectors derived from the i-vectors involved in the scoring.

In [21], a quality measure function (QMF) was proposed to
compensate for the score shift caused by background noise:

S′ = w0 + w1S + w2SNRtst + w3SNRtgt, (1)

where S is a PLDA score, SNRtst and SNRtgt are the SNR
of the test and target utterances, respectively, and wi’s are cali-
bration weights. As background noise can distort the i-vectors,
which in turn will shift the PLDA scores, it is more intuitive to
estimate the score shift directly from the i-vectors rather than
from the SNR of target and test utterances. This motivates us to
develop DNN-based score calibration methods.

In [25], we proposed to estimate the score shifts by multi-
task DNNs using noisy i-vector pairs and their corresponding
PLDA scores as input. Moreover, instead of expressing the
score shifts as a linear function of SNRs, we used the SNRs
of training utterances as part of the target outputs and applied
multi-task learning to guide the network to produce the ideal
score shifts or clean scores. In this paper, we extend the multi-
task DNNs in [25] in three respects. First, in addition to us-
ing SNR as target outputs, we also use utterance duration and
same-speaker and different-speaker hypotheses as target out-
puts. Second, we compute the posterior odds of same-speaker
and different-speaker hypotheses and use the odds as verifica-
tion scores. Third, we explore the potential of replacing the
PLDA model by a multi-task DNN which receives i-vector pairs
as input only. Results based on noise contaminated speech in
NIST 2012 SRE suggest that the multi-task DNNs can effec-
tively calibrate the scores produced by a PLDA model, leading
to superior performance as compared to the conventional linear
calibration method.

2. DNN Score Calibration/Scoring
2.1. Estimating Score Shifts by DNNs

A DNN can be trained to estimate the appropriate score shift
given the target and test i-vector pairs xtgt and xtst and the
uncalibrated PLDA score S:

DNN1(xtgt,xtst, S) ≈ δscore, (2)

where δscore denotes the ideal score shift that will bring S to
the clean score Scln as if both xtgt and xtst were derived from
clean utterances. Given the estimated score shift, the calibrated
score can be computed as:

S′1 = S + DNN1(xtgt,xtst, S). (3)

During the calibration stage, the DNN and the PLDA scor-
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Figure 1: DNN with classification and regression tasks.

ing function receive the same i-vector pair, where the former
computes the score shift, δscore, and the latter computes the
noisy PLDA score S. By substituting Eq. 2 into Eq. 3, we have
S′1 ≈ S + δscore = Scln, i.e., we recover the clean score.

2.2. Recovering Clean PLDA Scores by DNNs

In the above methods, scores are calibrated by shifting and scal-
ing. However, if the clean scores can be directly restored, the
estimation of score shifts seems to be redundant. To make the
calibrated scores close to the ideal clean scores, we can use a
DNN to model the complex relationship between the i-vector
pairs, noisy scores (S), and the clean scores (Scln) as follows:

S′2 = DNN2(xtgt,xtst, S) ≈ Scln. (4)

The DNN is trained to produce clean scores given i-vector pairs
and their corresponding noisy scores as input.

The DNNs in Eq. 2 and Eq. 4 have hundreds of input nodes
but only one output node. Their goal is to learn a regression
task to produce the desired score shifts or clean scores. During
training, the squared errors in the output node will need to be
propagated to hundreds of nodes in both the hidden and input
layers. Our experience is that having a single source of errors
makes the backpropagation (BP) of error gradients very inef-
ficient. One possible solution is to introduce some auxiliary
tasks for the network to learn. In the literature, this is known as
multi-task learning [26, 27]. Therefore, a multi-task DNN with
auxiliary information in the output layer may help to improve
the learning efficiency.

Fig. 1 shows a DNN that uses multi-task learning to learn
not only the main task but also some auxiliary tasks. The main
task is to produce the score shifts and the calibrated scores, and
the auxiliary tasks are to predict the SNRs and durations of
target-speaker’s and test utterances and the same-speaker and
different-speaker posteriors. These auxiliary tasks are selected
because they have great influence on the i-vectors and PLDA
scores. To leverage multi-task learning, the network is trained
to achieve two different tasks: regression and classification.
There are 6 output nodes in the regression task and 2 output
nodes in the classification task. Note that the main task (Nodes
3 and 4) is part of the regression task and that the auxiliary
tasks involve both classification (Nodes 1 and 2) and regression
(Nodes 5–8). The regression part of the DNN uses linear out-
put nodes and minimum mean squared error as the optimization

criterion, whereas the classification part uses softmax outputs
and cross-entropy as the optimziation criterion. Note that the
input and target values in the regression task are subject to z-
normalization.

During training, given an i-vector pair (xi,xj) and a noisy
uncalibrated PLDA score S of these two i-vectors, the DNN is
trained to output a target vector tij :

DNN3(xi,xj , S) ≈ tij =[
[y1, y2]︸ ︷︷ ︸

Classification

, [Scln, δscore, SNRi, SNRj ,Duri,Durj ]︸ ︷︷ ︸
Regression

]
, (5)

where SNRi and SNRj are the SNRs of the two utterances, Duri
and Durj are their durations, Scln is the clean score if both ut-
terances were clean, and δscore is the ideal score shift. Also,
[y1, y2] = [1, 0] if the two utterances are from the same speaker;
otherwise [y1, y2] = [0, 1].

During score calibration, only the clean scores (Node 3) and
the score shifts (Node 4) produced by the DNN will be used:

S′3 = DNN3,cln(xtgt,xtst, S) ≈ Scln (6)

S′4 = S + DNN3,shift(xtgt,xtst, S) (7)
≈ S + δscore = Scln,

where xtgt and xtst are the target-speaker’s and test-speaker’s
i-vectors, respectively. To make the score shifts compatible with
S, they are subject to inverse z-normalization. More specifi-
cally, DNN3,shift is the inverse z-norm of output Node 4.

Nodes 1 and 2 give the posterior probabilities (p+, p−) of
same-speaker and different-speaker hypotheses, which can be
leveraged to give the posterior odds:

S′5 = log

(
DNN3,cf (xtst,xtgt, S)[1]

DNN3,cf (xtst,xtgt, S)[2]

)
= log

(
p+

p−

)
, (8)

where DNN3,cf (xtst,xtgt, S)[i], i = 1, 2, represents Node i
in Fig. 1. Then, S′5 can be used as verification scores.

2.3. DNN Scoring Machine

It is of interest to train a multi-task DNN without using the noisy
PLDA scores as input. The advantage of this approach is that
the PLDA model is not necessary during the scoring stage, i.e.,
given an i-vector pair, we can obtain the approximated clean
score or score shift from the DNN’s outputs. We refer to the
resulting DNN as DNN scoring machine.

During training, given an i-vector pair (xi,xj), the DNN
scoring machine is trained to achieve both the classification and
regression tasks using tij as the target vector:

DNN4(xi,xj) ≈ tij =[
[y1, y2]︸ ︷︷ ︸

Classification

, [Scln, δscore, SNRi, SNRj ,Duri,Durj ]︸ ︷︷ ︸
Regression

]
, (9)

where the elements of tij have the same definitions as those
in Eq. 5. Note that Eqs. 9 and 5 differ in the input only. Ar-
chitecturally, this is equivalent to removing the input node S in
Fig. 1.

After training, only the clean scores (cln) and the score
shifts (shift) produced by the multi-task DNN will be used:

S′6 = DNN4,cln(xtgt,xtst) ≈ Scln, (10)

S′7 = S + DNN4,shift(xtgt,xtst) ≈ Scln. (11)



Table 1: Performance of various score calibration methods on CC4 of NIST 2012 SRE (male, core task) with test utterances con-
taminated with different levels of babble noise. For the DNN-based method, the network in Fig. 1 was trained by using different
combinations of auxiliary tasks, including classification (Cls, Nodes 1–2), score shift (SS, Node 4), SNR of target and test utterances
(SNR, Nodes 5–6), and duration of target and test utterances (Dur, Nodes 7–8).

Score Calibration Method Auxiliary tasks of DNN
Original 15dB 6dB 0dB

EER minDCF actDCF EER minDCF actDCF EER minDCF actDCF EER minDCF actDCF

Baseline (no calibration) N/A 1.56 0.218 0.855 2.27 0.225 0.778 2.29 0.276 0.749 5.37 0.753 0.779
SNR-dep Score Shift (Eq. 1) N/A 1.68 0.209 0.780 2.24 0.215 0.770 2.28 0.269 0.811 5.35 0.754 0.794

Recover Clean
Scores by DNN

(Eq. 6)

None 14.61 0.910 1.000 15.41 0.881 1.000 17.05 0.942 1.000 21.44 1.002 1.000
Cls 1.57 0.194 0.643 2.29 0.211 0.572 2.25 0.246 0.582 3.65 0.438 0.603

Cls + SS 1.59 0.193 0.595 2.26 0.211 0.527 2.24 0.243 0.531 3.55 0.425 0.548
Cls + SS + SNR 1.50 0.189 0.517 2.21 0.211 0.455 2.16 0.248 0.470 3.48 0.409 0.516

Cls + SS + SNR + Dur 1.56 0.193 0.763 2.31 0.212 0.700 2.21 0.239 0.716 3.58 0.430 0.744

Table 2: Performance of various DNN-based score calibration methods on CC4 of NIST 2012 SRE (male, core task) with test utterances
contaminated with different levels of babble noise.

Score Calibration Method
Original 15dB 6dB 0dB

EER minDCF EER minDCF EER minDCF EER minDCF

Estimate SNR-dep Score Shift (Eq. 1) 1.68 0.209 2.24 0.215 2.28 0.269 5.35 0.754
Recover Clean Scores by DNN (Eq. 6) 1.56 0.193 2.31 0.212 2.21 0.239 3.58 0.430
Estimate Score Shifts by DNN (Eq. 7) 1.54 0.192 2.30 0.211 2.21 0.238 3.57 0.428
Use Posterior Odds as Scores (Eq. 8) 1.70 0.193 2.25 0.210 2.23 0.245 3.56 0.426

Similar to DNN3, we may also use the posterior probabili-
ties produced by DNN4 to compute the posterior odds and use
them as verification scores:

S′8 = log

(
DNN4,cf (xtst,xtgt)[1]

DNN4,cf (xtst,xtgt)[2]

)
= log

(
p+

p−

)
. (12)

3. Experiments
3.1. Speech Data and Acoustic Features

Evaluations were conducted on the NIST 2012 SRE under
Common Condition 4 (CC4, male). Speech files from NIST
2005–2010 SREs were used as development data. Speech re-
gions were extracted by using a two-channel voice activity de-
tector [28]. A 60-dim vector comprising energy, MFCCs, and
their first and second derivatives was extracted every 10ms.

To obtain the performance under noisy conditions, we used
the FaNT tool [29] to add babble noise to the target-speaker ut-
terances and test utterances at an SNR of 15dB, 6dB, and 0dB,
respectively. Therefore, we have four groups of training utter-
ances and four groups of test utterances, with the first group
being the original utterances and the last three groups having
SNRs close to 15dB, 6dB, and 0dB, respectively. Hereafter, we
refer to these 4 groups as SNR groups.

3.2. DNN Training

To train the multi-task DNNs, we used the i-vectors derived
from the clean utterances and the 3 groups of noise contami-
nated utterances to give a rich set of clean scores Scln, noisy
scores S, and score shifts δscore. We formed utterance pairs
from the clean and noise contaminated groups. When both ut-
terances in a pair come from the clean group, we treated their
PLDA score as clean, i.e., Scln. If any of the utterances in the
pair is from the noise contaminated groups, we treated their
PLDA scores as noisy, i.e., S. For each utterance pair, their
clean PLDA score, ideal score shift, SNRs, durations, and class
(same-speaker or different-speaker) were used as the target val-
ues for DNN training. This procedure gives us 1.5 million in-
put/output pairs for same-speaker utterance pairs and 400 mil-
lion different-speaker utterance pairs for training.

Restricted Boltzmann machines with 256 hidden nodes
were trained layer-by-layer [30, 31], resulting in 4 hidden layers
for each DNN. The output layer was initialized with small ran-
dom weights. Then we applied 300 iterations of backpropaga-
tion (BP) to minimize the cross entropy in the classification task
with a learning rate of 0.005 and to minimize the mean squared
error in the regression task with a learning rate of 0.05. Both the
inputs and desired regression outputs of the DNNs were prepro-
cessed by z-normalization.

3.3. Denoising Senone I-vectors and PLDA Model

We used a senone i-vector/PLDA system [7] to produce the un-
calibrated scores. The 500-dimensional senone i-vectors were
whitened by within-class covariance normalization (WCCN)
[32] and length normalization [33], followed by linear discrim-
inant analysis (LDA) to reduce the dimension to 200 and vari-
ance normalization by WCCN [34].

The PLDA model was trained by using the utterances from
the 4 SNR groups mentioned in Section 3.1 and the i-vectors
derived from the microphone utterances (interview speech) of
the same set of target speakers in NIST 2006–2010 SREs. All
of the calibrated scores are subject to further calibration to pro-
duce true likelihood-ratio scores using the Bosaris toolkit [35].

4. Results and discussion
4.1. Importance of Uncalibrated Scores in DNN Input

Fig. 2 plots the l2-norm of the weight vectors corresponding to
the strength of connections between the input layer and the first
hidden layer. The figure suggests that the connection strength
between the uncalibrated score S and the first hidden layer is
much stronger than that between the i-vector pair and the first
hidden layer. This means that the uncalibrated PLDA scores
play an important role in this DNN.

4.2. Importance of the Classification Task

To highlight the importance of the classification task, we trained
two multi-task DNNs, one with the classification task and one
without the classification task. Then, we observed the mean



Table 3: Performance of multi-task DNNs without using the noisy PLDA scores as input. The test conditions are the same as Table 2.

Row Scoring Method Score Calibration Method
Original 15dB 6dB 0dB

EER minDCF EER minDCF EER minDCF EER minDCF

1 PLDA SNR-dep Score Shift (Eq. 1) 1.68 0.209 2.24 0.215 2.28 0.269 5.35 0.754
2 Recover Clean Score (Eq. 10) N/A 2.51 0.308 3.33 0.311 3.02 0.349 3.61 0.456
3 PLDA Score Shift (Eq. 11) 1.39 0.166 2.14 0.192 1.96 0.230 3.80 0.571
4 Posterior Odds (Eq. 12) N/A 3.37 0.415 4.22 0.410 4.52 0.445 5.54 0.660
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Figure 3: The mean squared test error between the recovered
clean scores and the true clean score for 500 epochs of BP.

squared error between the clean test scores and the recovered
scores (from Node 3 of Fig. 1) during the course of multi-task
training. Fig. 3 shows the test error against the iteration num-
ber for 500 epochs of BP. The result shows that although the
classification task leads to a higher test error at the beginning,
it can guide the DNN to find a better solution after 200 epochs.
Therefore the classification task plays an important role in the
training of the multi-task DNNs.

4.3. Results on NIST 2012 SRE

Table 1 shows the performance of various score calibration
methods, including the SNR-dependent score shift (Eq. 1)1 and
DNN-based methods. For the latter, the clean PLDA scores
were recovered from noisy PLDA scores (Eq. 6) using multi-

1We used the FoCal toolkit to find the weights of the QMF in Eq. 1.

task DNNs trained with different auxiliary tasks. All of the net-
works received i-vector pairs and PLDA scores as input.

The 3rd row in Table 1 represents the situation where all of
the auxiliary tasks have been removed, which results in a single-
task DNN. The performance of this single-task DNN is signif-
icantly poorer than that of the baseline. The poor performance
is attributed to the inability of the network to recover the clean
scores, as Fig. 3 suggests. Comparing the third and fourth rows,
the auxiliary classification task can assist the network to esti-
mate the ideal clean scores, leading to comparable performance
to the baseline. The SNR information improves the robustness
significantly. The duration information, however, is not helpful,
as evident by the slight performance degradation after adding
duration to the auxiliary task.

Table 2 shows the performance of the multi-task DNN with
noisy PLDA score as input shown in Fig. 1. Results show that
the three variant of calibrations defined in Eqs. 6, 7 and 8 have
similar performance under all SNR conditions. But all of them
outperform the baseline (Eq. 1), especially at 0dB. Interestingly,
although the posterior odds are derived from the outputs of an
auxiliary task, they perform quite well and are better than the
baseline in most cases.

Table 3 shows the performance of the DNN scoring ma-
chine described in Section 2.3. Evidently, under clean and mod-
erately noisy conditions (≥ 6dB), the performance is good only
when PLDA scoring is used. The DNN scoring machine out-
performs the baseline and others only when the noise level is
very high (0dB). This means that without using the noisy PLDA
scores as input, the DNN is not able to recover the clean scores
(Row 2). The reliability of the posterior probability outputs is
also questionable (Row 4). This is to be expected because ac-
cording to Fig. 2 and the discussions in Section 4.1, the noisy
uncalibrated scores play an important role in recovering the
clean scores. However, Table 3 shows that even without the
noisy PLDA scores as input, the DNN is still able to estimate
the score shift accurately, leading to the best performance in
Row 3. But, bear in mind that Row 3 requires the noisy PLDA
scores S during the scoring stage, as suggested in Eq. 11. This
means that the PLDA model is still indispensable.

5. Conclusions

This paper proposes several DNN-based score calibration al-
gorithms, where the calibrated scores, score shifts and posteri-
ors of same-speaker and different-speaker hypotheses were es-
timated. The three usages of the multi-task DNNs have very
close performance if the noisy scores are used as part of the in-
puts. Without the uncalibrated PLDA scores as input, the DNNs
can only estimate the score shifts with sufficient accuracy to im-
prove performance. In summary, the best performance can be
achieved if multi-task DNNs are used for calibrating the scores
produced by the PLDA model.
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[35] N. Brümmer and E. de Villiers, “The bosaris toolkit: Theory,
algorithms and code for surviving the new dcf,” arXiv preprint
arXiv:1304.2865, 2013.


