Unsupervised Domain Adaptation for Gender-Aware PLDA Mixture Models

Longxin Li and Man-Wai MAK
Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University

Introduction
- PLDA is still problematic when (1) the model is deployed to a new environment (in-domain) that is very different from the training one (out-of-domain) and (2) there are insufficient labeled data from the new environment.
- This paper proposes using out-of-domain training data to pre-train a PLDA mixture model and applying the mixture model on the in-domain training data to compute a pairwise score matrix for spectral clustering. The hypothesized speaker labels produced by spectral clustering are then used for re-training the mixture model to fit the new environment.
- Experiments on NIST 2016 SRE demonstrate the effectiveness of the proposed framework compared with agglomerative hierarchical clustering (AHC).

Background
- DNN-driven mixture of PLDA (DNN-mPLDA):
 \[p(x_i) = \sum_{k=1}^{K} \alpha_{ik} N(x_i | m_k, V_k) + \Sigma_k \]
- Target speaker’s utterance
- UBM(V)+Extractor
- DNN
- PLDA Mixture Model
- AHC

DNN-mPLDA.

Spectral Clustering of I-Vectors
- **Step 1** Compute a pairwise PLDA score matrix \(S \) from \(n \) training i-vectors:
 \[s_{ij} = S_{mPLDA}(x_i, x_j), \quad L = \{1, \ldots, n\}. \]
- **Step 2** Convert \(S \) to an adjacency matrix \(A \) with elements:
 \[a_{ij} = \begin{cases} \frac{1}{2} \frac{1}{\sigma_{max}} \frac{1}{\sigma_{ij}} & i \neq j \\ 1 & \text{otherwise} \end{cases} \]
 where \(\sigma_{max} \) is the absolute maximum in \(S \).
- **Step 3** Compute a Laplacian matrix:
 \[L = I - D^{-\frac{1}{2}} AD^{-\frac{1}{2}} \]
 where \(D \) is a diagonal matrix with elements \(d_{ii} = \sum_j a_{ij} \).
- **Step 4** Pack \(K \) eigenvectors of \(L \) with the smallest eigenvalues to form \(V = [v_1 \ldots v_K] \in \mathbb{R}^{n \times K} \).
- **Step 5** Normalize the row of \(V \):
 \[v_{ij} \leftarrow \frac{v_{ij}}{\sqrt{\sum_j v_{ij}}} \]
- **Step 6** Apply K-means to the \(n \) rows of \(V \).

Cluster Quality
- Silhouette values is used to quantify the quality of clusters. Each sample has a Silhouette value:
 \[s(i) = \frac{h(i) - \bar{a}(i)}{\max\{a(i), b(i)\}} \]
 where \(a(i) \) is the average dissimilarity of sample \(i \) with respect to other samples in the same cluster and \(b(i) \) is the lowest average dissimilarity of sample \(i \) with respect to any other cluster not containing \(i \).
- **Results**
 - Highest average Silhouette score
 - Less negative Silhouette scores
 - So, Iterative-SC produces clusters with better quality

Results
- Performance of the iterative retaining method for different numbers of iterations on SRE16-dev and SRE16-eval
- Performance of PLDA mixture models on SRE16 using different speaker clustering methods and with and without covariance matrix interpolation (Cov. Interp.)

References: