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Abstract
In telephone-based speaker verification, the channel conditions
can be varied significantly from sessions to sessions. There-
fore, it is desirable to estimate the channel conditions online
and compensate the acoustic distortion without prior knowledge
of the channel characteristics. Because no a priori knowledge
is used, the estimation accuracy depends greatly on the length
of the verification utterances. This paper extends the Blind
Stochastic Feature Transformation (BSFT) algorithm that we
recently proposed to handle the short-utterance scenario. The
idea is to estimate a set of prior transformation parameters from
a development set in which a wide variety of channel conditions
exists in the verification utterances. The prior transformations
are then incorporated into the online estimation of the BSFT
parameters in a Bayesian (maximum a posteriori) fashion. The
resulting transformation parameters are therefore dependent on
both the prior transformations and the verification utterances.
For short (long) utterances, the prior transformations play a
more (less) important role. We referred the extended algorithm
to as Bayesian BSFT (BBSFT) and applied it to the 2001 NIST
SRE task. Results show that Bayesian BSFT outperforms BSFT
for utterances shorter than or equal to 4 seconds.

1. Introduction
The acoustic mismatch between the training and recognition
conditions can significantly reduce the accuracy of speaker
recognition systems, and transducer variability has been shown
to be the main cause of acoustic mismatch. Transducer vari-
ability occurs when a system is trained with speech data ob-
tained from one type of transducer and is subsequently tested on
speech data recorded from other types of transducers. Channel
compensation is one of the possible approaches to minimizing
the effect of transducer variability.

Channel compensation can be applied in feature space [1],
[2], model space [3], [4], or score space [5]. Channel com-
pensation can also be supervised or unsupervised. Supervised
compensation assumes that the channel or handset characteris-
tics are known a priori [1]. On the other hand, unsupervised
compensation does not assume any knowledge of the channel
characteristics.

We have recently proposed an unsupervised feature-based
transformation approach, namely blind stochastic feature trans-
formation (BSFT) [6], to address the acoustic mismatch prob-
lem. Specifically, feature-based transformations are estimated
based on the statistical difference between test utterances and a
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composite GMM formed by combining the speaker and back-
ground GMMs. The transformations are then used to transform
the test utterances before verification.

Because the BSFT algorithm estimates the transformation
parameters based on the verification utterances and the clean
acoustic models only, the accuracy of the transformation param-
eters depends on the length of the verification utterances. For
short utterances, the algorithm may transform the distorted fea-
tures to an undesirable region, resulting in incorrect verification
decisions.

This paper extends the BSFT algorithm to handle the short-
utterance scenario. The idea is to estimate a set of prior transfor-
mation parameters from a development set in which a wide va-
riety of channel conditions exists in the verification utterances.
The prior transformations are then used to derive the hyperpa-
rameters that govern the prior distribution of the transforma-
tion parameters. The prior distribution is incorporated into the
online estiamtion of the BSFT parameters via the maximum a
posteriori (MAP) criterion. We refer the extended algorithm to
as Bayesian blind stochastic feature transformation (BBSFT).
Because the prior distribution reflects the acoustic mismatches
among different channels (e.g., handsets) in the development
set, BBSFT is able to take the common mismatches into account
during the estimation of transformation parameters. This ability
is especially important for short verification utterances because
short utterances may not contain sufficient channel information
for an accurate estimation of the transformation parameters.

We compared the performance of BBSFT against BSFT
by extracting short segments of verification utterances from the
2001 NIST SRE corpus. Experimental results suggest that BB-
SFT performs better than BSFT for short utterances.

2. Bayesian Blind Stochastic Feature
Transformation

The blind stochastic feature transformation (BSFT) proposed in
[6] is an unsupervised (blind) approach to channel mismatch
compensation. The transformation is blind in that the transfor-
mation parameters are determined from a clean acoustic model
and the distorted speech features derived from a claimant with-
out any prior knowledge about the channel. Specifically, given a
D-dimensional distorted vector y, the transformed feature vec-
tor is

x̂ = fν(y) = Ay + b, (1)
where A = diag {a1, . . . , aD} is a transformation matrix, b =
[b1, . . . , bD]T represents a bias vector, ν = {ai, bi}D

i=1 is the
set of transformation parameters, and fν(·) denotes the trans-
formation function. Intuitively, the bias b compensates the con-
volutive distortion and the matrix A compensates the effects of



noise.
Given a compact speech model Λ = {πj , µj , Σj}M

j=1 (typ-
ically M = 64) derived from the clean speech of several speak-
ers and distorted features Y = {y1, . . . ,yT } extracted from
a verification utterance, the maximum a posteriori estimates of
ν = {A,b} can be obtained by

νMAP = arg max
ν

p(ν|Λ, Y )

= arg max
ν

p(Y |ν, Λ)p(ν).

This is equivalent to maximizing the auxiliary function

Q(ν′|ν) = Q(A′,b′|A,b)

=

TX
t=1

MX
j=1

hj(fν(yt)) log


p(fν′(yt)|µj , Σj)

|Jν′(yt)|
ff

+ log p(A′)p(b′) (2)

with respect to ν′. In Eq. 2, ν′ and ν represent the new and cur-
rent estimates of the transformation parameters, respectively; T
is the number of distorted vectors; ν′ = {a′i, b′i}D

i=1 denotes
the transformation; |Jν′(yt)| is the determinant of the Jacobian
matrix, the (r, s)-th entry of which is given by Jν′(yt)rs =
∂fν′(yt)r/∂yt,s; and hj(fν(yt)) is the posterior probability

hj(fν(yt)) = P (j|yt, Λ, ν) =
πjp(fν(yt)|µj , Σj)PM
l=1 πlp(fν(yt)|µl, Σl)

,

(3)
where

p(fν(yt)|µj , Σj) = (2π)−
D
2 |Σj |−

1
2 ·

exp
n
− 1

2
(fν(yt)− µj)

T Σ−1
j (fν(yt)− µj)

o
. (4)

In Bayesian BSFT, the transformation parameters are mod-
eled by probability denisty functions, which are characterized
by some hyperparameters. Assume that b follows a Gaussian
distribution with mean vector β = [β1, . . . , βD]T and precision
matrix Γ = diag {γ2

1 , . . . , γ2
D}:

p(b) = (2π)−
D
2 ·
(

DY
i=1

γi

)
· exp

(
−1

2

DX
i=1

(bi − βi)
2γ2

i

)
. (5)

Assume also that A follows a matrix variate normal distribution
[7]

p(A) =
|Ω|− (D+1)

2

|Φ|D
2

· exp
n
− 1

2
tr(A−Υ)T Ω−1(A−Υ)Φ−1

o
, (6)

where Ω = diag {ω1, . . . , ωD}, Φ = diag {1, . . . , 1} and Υ
= diag {υ1, . . . , υD}. The hyperparameters Υ and Ω can be
obtained by

Υ =
1

K

KX

k=1

Ak (7)

and

Ω =
1

K

KX

k=1

(Ak −Υ)(Ak −Υ)T , (8)

where Ak is the k-th transformation matrix estimated from
training data and K is the number of transformation matrices
(see Section 3 for details).

Ignoring the terms independent of ν′ and assuming diago-
nal covariance (i.e., Σj = diag {σ2

j1, . . . , σ
2
jD}, Eq. 2 can be

written as

Q(ν′|ν) =

TX
t=1

MX
j=1

hj(fν(yt))
n
− 1

2

DX
i=1

(a′iyti + b′i − µji)
2

σ2
ji

+

DX
i=1

log(a′i)
o

+ log p(A′)p(b′). (9)

The maximum-a-posteriori estimates of ν can be found by the
EM algorithm as follows. In the E-step, Eqs. 3 and 4 are used
to compute hj(fν(yt)); then in the M-step, ν′ is obtained by
solving ∂Q(ν′|ν)∂ν′ = 0. More specifically, we solve

∂Q(ν′|ν)

∂a
′
i

=

TX
t=1

MX
j=1

hj(fν(yt))
n
− yti(a

′
iyti + b′i − µji)

σ2
ji

+
1

a′i

o
− a′i − υi

ωi
(10)

= 0

and

∂Q(ν′|ν)

∂b
′
i

=

TX
t=1

MX
j=1

hj(fν(yt))


− (a′iyti + b′i − µji)

σ2
ji

ff

−(b′i − βi)γ
2
i (11)

= 0,

which lead to

b′i =
pi − qia

′
i + βiγ

2
i

ri + γ2
i

, (12)

and
h
1 + ωisi − ωiq

2
i

ri + γ2
i

i
a′i

2
+

hωiqi(pi + βiγ
2
i )

ri + γ2
i

− ωiui − υi

i
a′i − ωiT = 0, (13)

where

pi =

TX
t=1

MX
j=1

hj(fν(yt))µjiσ
−2
ji , (14)

qi =

TX
t=1

MX
j=1

hj(fν(yt))ytiσ
−2
ji , (15)

ri =

TX
t=1

MX
j=1

hj(fν(yt))σ
−2
ji , (16)

si =

TX
t=1

MX
j=1

hj(fν(yt))y
2
tiσ

−2
ji , and (17)

ui =

TX
t=1

MX
j=1

hj(fν(yt))µjiytiσ
−2
ji . (18)

These E- and M-steps are repeated until Q(ν′|ν) ceases to in-
crease. The most significant improvement occurs during the
first 5 iterations. Note that when there is a large variation in A
and b, then ωi → ∞ and γi → 0 . This means that the terms



without ωi in Eq. 13 can be obmitted and Eqs. 12 and 13 reduce
to

b′i =
pi − qia

′
i

ri
, (19)

and
h
si − q2

i

ri

i
a′i

2
+
hqipi

ri
− ui

i
a′i − T = 0. (20)

Eqs. 19 and 20 are the maximum-likelihood estimate of b and
A, respectively (see [8], pp. 309).

3. Experiments
The Bayesian BSFT was applied to the one-speaker detection
task specified in the 2001 NIST speaker recognition evaluation
set [9]. During training, a 1024-component GMM-UBM was
trained using the training utterances of all 60 speakers in the
development set of the corpus. Then, for each target speaker in
the evaluation set, a speaker-dependent GMM was created by
adapting the UBM using MAP adaptation [10].

The development set of the 2001 NIST corpus was also used
to estimate the hyperparameters of BBSFT and Znorm param-
eters. Specifically, for each speaker in the development set, a
1024-center speaker model is created by adapting the UBM us-
ing MAP adaptation. Then, for the k-th verification trial in the
development set, transformation parameters νk = {Ak,bk}
were estimated using BSFT (Eqs. 19 and 20) and the corre-
sponding target-speaker model. The K sets of transformation
parameters {νk}K

k=1 were then used to determine the hyperpa-
rameters (Eqs. 7 and 8 ), where K is the number of verification
trials in the development set. For each speaker model in the
evaluation set of the corpus, a set of Znorm parameters (mean
and standard derivation of impostor scores) [11] was determined
by presenting all of the impostor utterances in the development
set to the speaker model and the UBM. The impostor utterances
were transformed by either CMS, BSFT, or BBSFT. Therefore,
the Z-norm parameters depend on the transformation method
being used. Specifically, each target speaker has three sets of Z-
norm parameters, one for CMS, one for BSFT and the another
one for BBSFT.

During verification, the feature sequence Y obtained from
a claimant was transformed by the feature transformation pa-
rameters fν(·) to form a sequence of transformed vectors Yν .
The transformed vectors were then fed to a 1024-center GMM
speaker model (ΛN

s ) and the 1024-center UBM (ΛN
b ) to obtain

the score

S(Yν) = log p(Yν |ΛN
s )− log p(Yν |ΛN

b ),

which was further normalized by the Znorm parameters. The re-
sulting score was compared with a global, speaker-independent
threshold for decision making. In this work, the threshold was
adjusted to determine an equal error rate (EER).

To compare the performance of BSFT and BBSFT, we ran-
domly extracted short speech segments from the original verifi-
cation utterances to form 5 sets of testing utterances. The 5 sets
consist of speech data of duration 1, 2, 4, 8, and 16 seconds.

Mel-frequency cepstral coefficients (MFCCs) and their
first-order derivatives were computed every 14ms using a Ham-
ming window of 28ms. Cepstral mean subtraction (CMS) [12]
was applied to the MFCCs to remove linear channel effects.
The MFCCs and delta MFCCs were concatenated to form 24-
dimensional feature vectors.
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Figure 1: A two-dimensional hypothetical problem illustrating
the idea of BSFT and BBSFT for (a) 100 distorted patterns and
(b) 10 distorted patterns. The red dots and blue asterisk repre-
sent the prior patterns and the distorted patterns, respectively.
The blue and green ellipses represent the Gaussian mixtures in
the clean speaker model and the clean impostor model, respec-
tively. Both models have two mixtures, i.e M = 2. The fig-
ures show that patterns transformed by BSFT (red circles) were
scattered over a large region of the feature space, whereas those
transformed by BBSFT (grey squares) were confined to the re-
gions occupied by the speaker and background models. The
prior information becomes important when the number of dis-
torted patterns is small.



Verification EER (%) Min. DCF
Utterance CMS BSFT Bayesian CMS BSFT Bayesian
Length (sec.) BSFT BSFT
1 24.87 23.19 22.96 0.0875 0.0855 0.0849
2 19.83 18.08 17.73 0.0765 0.0707 0.0689
4 14.96 13.18 12.98 0.0611 0.0555 0.0549
8 12.05 10.43 10.65 0.0518 0.0448 0.0445
16 11.33 9.21 9.34 0.0454 0.0388 0.0383
Whole Utterance 10.79 8.91 9.05 0.0435 0.0413 0.0409

Table 1: Equal error rates (in %) and minimum decision cost achieved by cepstral mean subtraction (CMS), blind stochastic feature
transformation (BSFT) and Bayesian blind stochastic feature transformation (BBSFT). The scores in the three methods were normalized
by their respective Z-norm parameters.

4. Results and Discussions
Table 1 shows the equal error rates and minimum decision
cost for blind stochastic feature transformation (BSFT) and
Bayesian blind stochastic feature transformation (BBSFT),
where the number of components M in Eq. 2 was set to 64.1

Evidently, when testing data is limited (i.e., between 1 sec. and
8 sec.), all cases of BBSFT show reduction in error rates when
compared to BSFT. On the other hand, when testing data is suf-
ficient (e.g., 16 sec.), BSFT achieves better performance than
BBSFT because the hyperparameters impose excessive con-
straint on the transformation parameters when sufficient testing
data are available.

Fig. 2 shows the DET curves for CMS, BSFT and BBSFT.
Testing data were limited to 2 second. The DET curves show
that BBSFT performs better than BSFT at most of the operating
points.

5. Conclusions
We have extended the Blind Stochastic Feature Transformation
(BSFT) algorithm to handle the short-utterance scenario during
speaker verification. The proposed algorithm, Bayesian BSFT,
estimates a set of prior transformation parameters from a de-
velopment set containing a wide variety of channel conditions.
The prior transformations are incorporated into the online es-
timation of the BSFT parameters by maximizing the a posteri-
ori probability of the transformation parameters. Experimental
results based on the 2001 NIST SRE task show that Bayesian
BSFT outperforms BSFT for utterances shorter than or equal to
4 seconds.
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