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To improve the reliability of telephone-based speaker verification 
systems, we have recently proposed the blind stochastic feature 
transformation (BSFT).

However, for short-utterances, the BSFT algorithm may transform the 
distorted features to an undesirable region, resulting in incorrect 
verification decisions. 

This paper extends the BSFT algorithm to handle the short-utterance 
scenario. The idea is to estimate the prior distribution of the 
transformation parameters.  The prior distribution is incorporated into 
the online estimation of the BSFT parameters via MAP criterion. We 
refer the extended algorithm to as Bayesian blind stochastic feature 
transformation (BBSFT).

Experimental results show that BBSFT performs better than BSFT for 
short utterances.
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In Bayesian BSFT and BSFT, the transformed feature vector is

In Bayesian BSFT, the transformation parameters are modeled by 
probability density functions
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where Ω = diag {ω1, . . . , ωD} and Υ
{

= diag {υ1, . . . , υD}

x̂ = fν(y) = Ay + b
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ExperimentsExperiments

• 2001 NIST speaker recognition evaluation set.

• 174 target speakers (74 male and 100 female).

• Enrollment: approximately 2 minutes of speech.

• Verification: 2038 utterances (850 male and 1188 female).

• 5 sets of test utterances were extracted from the original verification 
utterances. The 5 sets consists of speech data of duration 1, 2, 4, 8, 16 
seconds.

• Speaker and background models:

– MFCC +      MFCC

– A universal background model with 1024 centers.

– Speaker models: adapted from the gender-independent background 
model using MAP.

∆
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State-of-the-art speaker verification systems:
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Telephone-based speaker verification system
Suffer from performance degradation because of handset 
mismatch: different handsets will be used in enrollment and 
verification sessions

The stochastic feature transformation (SFT) proposed by Mak and 
Kung, ICASSP’02, is adopted to improve the system robustness
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