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Abstract
A novel technique for speaker verification over a communica-
tion network is proposed. The technique employs cepstral coef-
ficients (LPCCs) derived from G.729 and G.723.1 coder param-
eters as feature vectors. Based on the LP coefficients derived
from the coder parameters, LP residuals are reconstructed, and
the verification performance is improved by taking account of
the additional speaker-dependent information contained in the
reconstructed residuals. This is achieved by adding the LPCCs
of the LP residuals to the LPCCs derived from the coder param-
eters. To reduce the acoustic mismatch between different hand-
sets, a technique combining a handset selector with stochastic
feature transformation is employed. Experimental results based
on 150 speakers show that the proposed technique outperforms
the approaches that only utilize the coder-derived LPCCs.

1. Introduction
As a result of the popularity of digital communication sys-
tems, there has been increasing interest in the automatic recog-
nition of resynthesized coded speech [1], [2], [3]. For instance,
speaker verification based on GSM, G.729, and G.723.1 resyn-
thesized speech was studied in [2]. It was shown that recogni-
tion performance generally degrades with coders’ bit rate. In [2]
and [3], techniques that require knowledge of the coder param-
eters and coder internal structure were proposed to improve the
recognition performance of G.729 coded speech. However, the
performance is still poorer than that achieved by using resyn-
thesized speech.

In addition to the acoustic distortion caused by the transcod-
ing process, transducer variability can also result in acoustic
mismatches between the speech data gathered from different
handsets. The sensitivity to handset variations means that hand-
set compensation techniques are essential for practical speaker
verification systems. Feature transformation is a possible ap-
proach to minimizing the mismatch caused by the transcoding
process and handset variability. We have recently proposed
a technique that combines maximum-likelihood based feature
transformation and handset identification for speaker verifica-
tion [4, 5]. In [6], we further demonstrated that the technique is
also applicable to the resynthesized speech of six coders. This
paper extends this technique to speaker verification over a dig-
ital communication network in which speaker-dependent fea-
tures are extracted directly from coders’ parameters.

In this work, the ITU-T G.729 [7] and G.723.1 [8] speech
coders were employed to encode and decode the HTIMIT cor-
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pus [9]. LP-derived cepstral coefficients (LPCCs) extracted
from the coder parameters were used as the basic features for
speaker verification. In order to improve the verification perfor-
mance, additional feature vectors that take speaker characteris-
tics in the LP residuals into account were added to the LPCCs.
Results using cepstral mean normalization as channel compen-
sation are also shown for comparison.

2. Coder-Derived Feature Vectors
G.729 is an 8 kbit/s toll-quality speech coding standard for per-
sonal communication and satellite systems. In G.729, forward
adaptation is used to determine the synthesis filter parameters
every 10 ms. These filter coefficients are then converted to line
spectral frequencies (LSFs) and quantized using predictive two-
stage vector quantization. Each of the 10 ms frames is split into
two 5 ms subframes and the excitation for the synthesis filter
is determined for each subframe. The long-term correlations
in the speech signal are modelled using an adaptive codebook
with fractional delay. An algebraic codebook with an efficient
search procedure is used as the fixed codebook. The adaptive
and fixed-codebook gains are vector quantized using a two-
stage conjugate structure codebook. The entries from the fixed,
adaptive, and gain codebooks are chosen every subframe using
an analysis-by-synthesis search.

G.723.1 is a 5.3 and 6.3 kbit/s speech coding standard for
multimedia services such as video conferencing. G.723.1 spec-
ifies multi-rate coders operated on 30 ms speech frames. Af-
ter high pass filtering, each speech frame is divided into 4 sub-
frames to obtain the LP coefficients. Quantized LSFs are then
determined in the last subframe using predictive split vector
quantization. The unquantized LP coefficients are used to con-
struct a short-term perceptual weighting filter. Pitch is estimated
every two subframes. Together with the computed impulse re-
sponse, a pitch predictor, which contributes as a conventional
adaptive codebook, is created. In high bit-rate operation, multi-
pulse maximum-likelihood quantization excitation is used, and
for low bit-rate operation, algebraic code excitation is used.
The pitch predictor gains and fixed codebook gains are vector
quantized, and their entries are chosen using an analysis-by-
synthesis search.

In G.729 and G.723.1 decoders, the received bit-stream is
decoded to obtain synthesis filter coefficients. Entries from the
fixed, adaptive, and gain codebooks are also determined to form
an excitation signal for the synthesis filter.

In this work, a G.729 coder and a high-rate G.723.1 coder
were used to code telephone speech in the HTIMIT corpus
[9]. Feature vectors were derived from the coder parame-
ters (LSFs) at the decoder side. The feature vectors are the



12-th order LP-derived cepstral coefficients (LPCCs),cv =
[cv(1), . . . , cv(12)]T , which can be computed recursively from
the quantized LP coefficients using [10]

cv(n) = a(n)+

n−1∑
m=1

(m

n

)
cv(m)a(n−m) n = 1, 2, . . . , P

(1)
where{a(n)}P

n=0 are the quantized LP coefficients of the syn-
thesis filter andP is the order of the filter.

In general, speaker verification systems use features repre-
senting the vocal tract only. However, the human vocal mech-
anism is driven by an excitation source, which also contains
speaker-dependent information (e.g. phonation, respiratory, and
mixed-voiced and unvoiced, etc.). Therefore, verification per-
formance can be improved if features derived from the excita-
tion signals are also employed. The most obvious information
that can be extracted from the excitation signals is the pitch pe-
riod. It has been shown that pitch information is speaker depen-
dent [11] and that by using a Bayesian network, density func-
tions of pitch period can be combined with those of spectral
envelopes for speaker verification [12]. Instead of extracting
the pitch period from the excitation signals, we may consider
the excitation signals as the additional information that is not
encapsulated in the spectral parameters such as MFCCs and
LPCCs. Research in speech coding has shown that proper en-
coding of LP-residues is detrimental to the quality of synthetic
speech. It has also been shown that LP-residues of speech con-
tains speaker-dependent information [13]. More interestingly,
humans can recognize individuals by listening to LP-residues
alone [14]. All of these evidences suggest the promise of LP-
residues in speaker recognition.

In order to extract the additional speaker-dependent infor-
mation from the coder parameters, we first reconstructed the
LP residuals from the optimum vectors of the fixed, adaptive,
and gain codebooks. Then, for each segment (10 ms for G.729
and 30 ms for G.723.1) of the residual signals, LP analysis was
performed using the autocorrelation method [10] with a 30 ms
asymmetric window for G.729 and a 22.5 ms Hamming win-
dow for G.723.1. The autocorrelation coefficients of windowed
residual signals were computed and converted to LP coeffi-
cients using the Levinson-Durbin algorithm. A set of LPCCs,
cr = [cr(1), . . . , cr(12)]T , can then be computed from the
LP coefficients of the residual signals using a recursive formula
similar to (1). As the synthetic speech is the convolution of the
residual signals and the vocal-tract impulse response, we added
the cepstrum of residuals to that of the vocal-tract transfer func-
tion. More specifically, the proposed feature vectors are defined
as:

c = cv + cr (2)

wherec = [c(1) . . . c(12)]T .

3. Handset Mismatch Compensation
We extended our recently proposed feature transformation tech-
nique [4] to handset- and coder-mismatch compensation. The
key idea is to transform the distorted features to fit the clean
speech models. Specifically, for each speech frame, the recov-
ered cepstral coefficients are determined by:

ĉ(n) =

K∑

k=1

gk(c)
[
αk,n (c(n))2 + βk,nc(n) + γk,n

]
(3)

whereαk,n, βk,n andγk,n, n = 1, . . . , 12, are the transfor-
mation parameters,c(n) is then-th component of the distorted
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Figure 1: Combining handset identification and feature trans-
formation for speaker verification.

cepstral vectorc, ĉ(n) is the recovered cepstral component, and
gk(c) is the posterior probability of selecting thek-th trans-
formation given the distorted vectorc. These transformation
parameters can be determined by maximizing the likelihood of
the distorted data given a clean speech model [4].

As the transformation parameters are handset-dependent, it
is necessary to determine one set of transformation parameters
for each type of handsets that will be used by the claimants. A
handset selector [5] will also be needed to identify the handset
types used by the claimants during verification so that an ap-
propriate set of transformation parameters can be selected. The
combination of handset identification and feature transforma-
tion is illustrated in Fig. 1.

4. Experiments and Results
4.1. Speech Corpus and Features

To evaluate the proposed technique, the uncoded HTIMIT cor-
pus [9] and its transcoded variants were employed. HTIMIT
was obtained by playing a subset of the TIMIT corpus through
a set of telephone handsets (cb1-cb4, el1-el4, and pt1) and a
Sennheizer head-mounted microphone (senh). Speakers in the
corpus were divided into a speaker set (50 male and 50 female)
and an impostor set (25 male and 25 female). The SA and SX
sentence sets of Handset senh were used for enrollment, while
the SI sentence sets from all handsets were used for verifica-
tion. As a result, we were able to compare the coder-derived
features under both handset matched and handset mismatched
conditions.

There are three different feature representations in the ex-
periments:

• FeatureA: LPCCs obtained from the front-end of the
LP coefficients in the encoder (Section 3.2.1-2 of [7] and
Section 2.4 of [8]).

• FeatureB: LPCCs computed from the quantized LSFs
in the decoders (i.e.cv as defined in (1)).

• FeatureC: Sum of Feature B and the LPCCs derived
from the residualcr (i.e. c as defined in (2)).

To obtain FeatureA, the speech in HTIMIT was first filtered
with a 2nd-order pole/zero highpass filter with a cutoff fre-
quency at 140 Hz. LP analysis was performed once per 10 ms
for G.729-transcoded speech using the autocorrelation method
with a 30 ms asymmetric window, while it was performed once



per 30 ms for G.723.1-transcoded speech with a 22.5 ms Ham-
ming window. The 10th-order LPCCs were then computed from
the LP coefficients.

4.2. Speaker Enrollment and Verification

For each of the feature sets (A, B andC) mentioned in Sec-
tion 4.1, we used the SA and SX sentence sets of Handset
senh to train 100 personalized 32-center GMMs (Ms,ω where
ω ∈ {A, B, C}) that model the characteristics of the speakers
in the speaker set. All of the 100 speakers in the speaker set
were also used to train a 64-center GMM background models
for each feature set, i.e.Mb,ω whereω ∈ {A, B, C}. The
background models were shared by all speaker models during
verification.

The clean utterances of 10 speakers from the speaker set
were used to create a 2-center GMM (ΛX ) clean model. Using
this model and the estimation algorithms described in [4], a set
of feature transformation parametersν = {αk,n, βk,n, γk,n}
were computed for each handset. In particular, the SA and SX
utterances from handset “senh” were considered as clean and
were used to createΛX , while the SA and SX utterances spoken
by the same 10 speakers but using other 9 handsets (cb1-cb4,
el1-el4, and pt1) were used as the distorted speech. Note that
the objective is to model the statistical difference between the
clean and distorted speech, not the statistical characteristics of
these 10 speakers. Therefore, it is not absolutely necessary to
choose these speakers from a held-out set. Note also that only
the training utterances from the enrollment sessions were used
for estimating the transformation parameters.

During verification, a vector sequenceY derived from a
claimant’s utterance (SI sentence) was fed to the handset se-
lector [5]. According to the outputs of the handset selector,
a set of transformation parameters was selected. The fea-
tures were transformed and then fed to the speaker model
(Ms,ω) corresponding to the claimed identity to obtain a score
(log p(Y |Ms,ω)), which was then normalized according to

S(Y ) = log p(Y |Ms,ω)− log p(Y |Mb,ω) (4)

where Mb,ω represents the background model andω ∈
{A, B, C}. The normalized scoreS(Y ) was compared with
a threshold to make a verification decision. In this work, the
threshold for each speaker was adjusted to determine the equal
error rate (EER).

4.3. Results and Discussions

The experimental results for G.729- and G.723.1-transcoded
speech are summarized in Table 1. A baseline experiment
(without using the handset selectors and feature transforma-
tions) and an experiment using CMS as channel compensation
were also conducted for comparison. All error rates are based
on the average of 100 genuine speakers and 50 impostors. Av-
erage EERs for the three different features are plotted in Fig. 2.
The average EER is computed by taking the average of all the
EERs corresponding to different handsets.

It is obvious from Table 1 that CMS degrades the per-
formance of the system when the enrollment and verification
sessions use the same handset (senh). In the matched hand-
set condition, we found that the transformation technique is
slightly inferior to the baseline in all the three feature repre-
sentations. This is because a few utterances were considered
as recorded from handsets other than senh. On the other hand,
when feature transformation is employed under handset mis-
matched conditions, the handset selectors are able to detect the
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Figure 2: Average EERs (over both matched and mismatched
conditions) achieved by the three different feature representa-
tions using the baseline, CMS and feature transformation. FTx,
wherex = 0, 1, 2, denotes the order of feature transformation
in (3), andK denotes the number of transformations.

most likely handset and facilitate the subsequent transforma-
tion of the distorted features. As a result, the transformation
technique achieves significant error reduction as compared to
the baseline and CMS for all the three feature representations
under mismatched conditions.

As shown in Fig. 2, the verification performance becomes
poorer when the feature vectors are obtained from the quantized
LSFs (FeatureB). On the other hand, FeatureC is superior to
FeatureB and in some cases even better than FeatureA. Since
additional speaker characteristics can be found in the excitation
signals, the proposed feature vectors (FeatureC), which take
account of the LP residuals, can further improve the verification
performance. We can also notice from Fig. 2 that transform-
ing the features derived from the G.729 codecs can improve the
performance to a level beyond the one attainable by extracting
LPCCs from the encoders’ front-end.

5. Conclusions
A technique that improves the performance of speaker verifi-
cation from G.729 and G.723.1 coded telephone speech is pro-
posed. In this technique, additional speaker-dependent infor-
mation that takes account of the LP-residual spectra is incor-
porated into the proposed feature representation. A new chan-
nel compensation approach for verifying speakers from coded
telephone speech has also been presented. Results show that
adding the LPCCs of LP-residuals to the coder-derived LPCCs
achieves the best result. It was also found that the transforma-
tion technique outperforms the CMS approach and significantly
reduces the error rates of a baseline system.
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