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Preface
Proteins, which are essential macromolecules for organisms, need to be located in ap-
propriate physiological contexts within a cell to exhibit tremendous diversity of bio-
logical functions. Aberrant protein subcellular localization may lead to a broad range
of diseases. Knowing where a protein resides within a cell can give insights into drug
target discovery and drug design. This book explores machine-learning approaches
to the automatic prediction of protein subcellular localization. The approaches ex-
ploit the gene ontology database to extract relevant information. With the ever in-
creasingnumbers of newprotein sequences in the postgenomic era,machine-learning
approaches have become an indispensable tool for assisting the laborious and time-
consuming web-lab experiments and for accurate, fast, and large-scale predictions in
proteomics research.

Recent years have witnessed an incredibly fast development of molecular biol-
ogy and computer science, which makes it possible to utilize computational methods
to determine the subcellular locations of proteins. It is of paramount significance for
wet-lab biologists, bioinformaticians, and computational biologists to be informed of
the up-to-date development in this field. Compared to traditional books on protein
subcellular localization, this book has the following advantages:
1. This book elaborately presents the latest state-of-the-art machine-learning ap-

proaches for protein subcellular localization prediction.
2. This book comprehensively covers many aspects of protein subcellular localiza-

tion, from single- to multi-label prediction, from prediction of Homo sapiens pro-
teins, Viridiplantae proteins, Eukaryota proteins to prediction of Virus proteins.

3. This book systematically introduces three machine-learning approaches to im-
proving predictors’ performance, including classification refinement, deeper fea-
ture extraction and dimensionality reduction.

4. This book not only proposes several advanced and accurate single- and multi–
label predictors but also introduces their easy-to-use online web-servers.

This book is organized into four related parts:
1. Part I – Chapters 1, 2, and 3 – introduces the significance of computationally pre-

dicting protein subcellular localization, provides an overview of state-of-the-art
approaches, and details the legitimacy of using gene ontology (GO) information
for predicting subcellular localization of proteins.

2. Part II – Chapters 4, 5, 6, and 7 – proposes several state-of-the-art predictors for
single- and multi-location protein subcellular localization. In Chapter 4, two pre-
dictors, namely GOASVMand FusionSVM, both based onGO information, are pro-
posed for single-location protein subcellular localization. Subsequently, multi-
location protein subcellular localization is described in Chapter 5. In this chapter,
several multi-label predictors, including mGOASVM, AD-SVM, and mPLR-Loc,
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vi | Preface

which were developed based on different classifiers, are introduced for accurate
prediction of subcellular localization of both single- and multi-location proteins.
Next, Chapter 6 presents the predictors, namely SS-Loc andHybridGO-Loc, which
exploit the deep information embedded in the hierarchical structure of the GO
Database. These predictors incorporate the information of semantic similarity
over GO terms. For large-scale protein subcellular localization, Chapter 7 intro-
duces ensemble randomprojection to construct twodimension-reducedmulti–la-
bel predictors, namely RP-SVM and R3P-Loc. In addition, two compact databases
(ProSeq and ProSeq-GO) are proposed to replace the conventional databases
(Swiss-Prot and GOA) for fast and efficient feature extraction.

3. Part III – Chapters 8, 9, and 10 – presents the experimental setup and results for
all of the proposed predictors and further discusses the properties of the proposed
predictors. Chapter 8 details the specific experimental setup, including datasets
construction and performance metrics. Extensive experimental results and anal-
yses for all the proposed predictors are detailed in Chapter 9. Further discussions
are provided in Chapter 10.

4. Part IV – Chapter 11 – gives a conclusion and possible future directions for further
research in this field.

It is confidently believed that this book will provide bioinformaticians and compu-
tational biologists with the latest state-of-the-art machine-learning approaches for
protein subcellular localization prediction and will enlighten them with a system-
atic scheme to improve predictors’ performance. For wet-lab biologists, this book
offers accurate and fast subcellular-localization predictors and easy-to-use online
web-servers.
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