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Abstract—The success of the recent i-vector approach to
speaker verification relies on the capability of i-vectors to capture
speaker characteristics and the subsequent channel compensation
methods to suppress channel variability. Typically, given an utter-
ance, an i-vector is determined from the utterance regardless of
its length. This paper investigates how the utterance length affects
the discriminative power of i-vectors and demonstrates that the
discriminative power of i-vectors reaches a plateau quickly when
the utterance length increases. This observation suggests that
it is possible to make the best use of a long conversation by
partitioning it into a number of sub-utterances so that more i-
vectors can be produced for each conversation. To increase the
number of sub-utterances without scarifying the representation
power of the corresponding i-vectors, repeated applications of
frame-index randomization and utterance partitioning are ap-
plied. Results on NIST 2010 speaker recognition evaluation (SRE)
suggest that (1) using more i-vectors per conversation can help to
find more robust linear discriminant analysis (LDA) and within-
class covariance normalization (WCCN) transformation matrices,
especially when the number of conversations per training speaker
is limited; and (2) increasing the number of i-vectors per target
speaker helps the i-vector based support vector machines (SVM)
to find better decision boundaries, thus making SVM scoring
outperforms cosine distance scoring by 19% and 9% in terms of
minimum normalized DCF and EER.

Index Terms—Speaker verification, i-vectors, utterance parti-
tioning with acoustic vector resampling (UP-AVR), linear dis-
criminant analysis, support vector machines.

I. INTRODUCTION

IN recent years, using i-vectors [1] as features has be-
come one of the promising approaches to text-independent

speaker verification. Unlike joint factor analysis (JFA) [2] in
which two distinct space (speaker space and channel space)
are defined, the i-vector approach defines a single space called
total variability space. The acoustic characteristics (including
both speaker and channel) of an utterance are represented by a
single vector called the i-vector whose elements are essentially
the latent variables of a factor analyzer. Compared with the
GMM-supervectors, the dimensionality of i-vectors is much
lower. Therefore, statistical techniques such as linear discrimi-
nant analysis (LDA) [3], within-class covariance normalization
(WCCN) [4], and probabilistic LDA [5] can be applied to
suppress the channel- and session-variability.

While these techniques have achieved state-of-the-art per-
formance in recent NIST Speaker Recognition Evaluations
(SRE), they require multiple training speakers each providing
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sufficient numbers of sessions to train the transformation
matrices or loading matrix. However, collecting such a corpus
is expensive and inconvenient. In a typical training dataset,
the number of speakers could be fairly large, but the number
of speakers who can provide many sessions is quite lim-
ited. When the number of training speakers and/or number
of recording sessions per speaker are insufficient, numerical
difficulty or error will occur in estimating the transformation
matrices, resulting in inferior performance. In machine learn-
ing literature, this is known as the small sample-size problem
[6], [7].

Before i-vectors can be extracted from utterances, it is
necessary to use the utterances of a large number of speakers to
compute the total variability matrix (the factor loading matrix
in factor analysis). Then, given the utterance of a target speaker
or a claimed speaker, the latent variables that constitute the i-
vector are estimated based on the total variability matrix and
the sufficient statistics of the utterance. Therefore, the speaker-
dependent information of the whole utterance is embedded in
this low-dimensional i-vector. The amount of speaker informa-
tion will certainly increase with the utterance length but the
increase is unlikely to be linear. To confirm this conjecture,
we have investigated the relationship between the length of
the utterances and the discriminative power of the resulting i-
vectors [8]. Interestingly, we observed that the discriminative
power of the i-vectors becomes saturated quickly and flatten
out when the utterances exceed 2–3 minutes in length.

Intuitively, if the discriminative power of i-vectors becomes
saturated when the utterance length reaches two minutes, it
will be a waste of resources if conversations longer than two
minutes are used for estimating the i-vectors. A better way
to exploit the speaker information from a long conversation
is to divide it into a number of short conversations (sub-
utterances) so that multiple i-vectors can be produced for
each conversation. In [9], [10], we developed a partition-
ing technique, namely utterance partitioning with acoustic
vector resampling (UP-AVR), to alleviating the data imbal-
ance problem in GMM-SVM speaker verification. The idea
is to partition an enrollment utterance into a number of
sub-utterances and to resample the acoustic vectors to pro-
duce more GMM-supervectors for training the target-speaker’s
SVM. Specifically, the frame indexes of a long conversation
are firstly randomized; then the randomized frame-sequence
is partitioned into equal-length segments, with each segment
independently used for estimating a GMM-supervector. This
frame-index randomization and partitioning process can be
repeated several times to produce a desirable number of GMM-
supervectors for each conversation. In this paper, we extend
this partitioning and resampling method to i-vector systems.
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The extensions have four fronts:

1) applying UP-AVR to produce more i-vectors per speaker
for training the LDA and WCCN matrices and for training
target-speaker’s SVMs.

2) analyzing the relationship between the length of sub-
utterances and the discriminative power of the corre-
sponding i-vectors;

3) investigating the effect of the number of training utter-
ances and training speakers on the discriminative power
of LDA and WCCN projected i-vectors;

4) comparing the effectiveness of UP-AVR against the clas-
sical pseudo-inverse LDA and PCA pre-preprocessing in
alleviating the small-sample size problem that LDA and
WCCN may encounter.

In [8], we have reported some preliminary results on Item
1. In this paper, we provide further results on Item 1 and
perform extensive analysis on UP-AVR in i-vector systems and
the relationship between utterance length and discriminative
power of i-vectors. Moreover, unlike our earlier work in [9],
[10], in this paper, we address not only the data-imbalance
problem in i-vector based SVM scoring but also the small-
sample size problem in LDA and WCCN.

As compared to GMM–SVM, there are some new chal-
lenges when applying UP-AVR to i-vector systems. First,
because UP-AVR produces multiple GMM-supervectors from
one enrollment utterance, some of the speaker-class supervec-
tors may be highly similar. If these supervectors are linearly
separable from the background-speakers’ supervectors,1 the
SVM training algorithm will select those that are closest to
the decision boundary as support vectors and consider the rest
as redundant vectors. Therefore the existence of highly similar
or redundant GMM-supervectors will not be detrimental to the
resulting SVMs. However, in the i-vector case, because UP-
AVR is used to generate more i-vectors for estimating the
LDA and WCCN matrices, all training i-vectors, including
redundant and highly similar ones, have contribution to the
computation of projection matrices. Therefore, it is important
to investigate how these vectors might affect the performance
of the i-vector systems. Second, in GMM-SVM, if a sub-
utterance is too short (say less than 15 seconds), the resulting
GMM-supervector will be almost identical to that of the UBM.
The i-vectors, on the other hand, do not enjoy this nice
property because of the matrix inversion in Eq. 6 of [1].
Therefore, it is important to investigate the effect of varying
the sub-utterance length in the case of i-vector systems.

The paper is organized as follows. Section II outlines
the i-vector framework for speaker verification. Section III
highlights the relationship between the utterance length and
the discriminative power of LDA+WCCN projected i-vectors.
Section IV describes the idea of UP-AVR and its applications
to the i-vector framework. In Sections V and VI, we report
evaluations based on NIST 2010 SRE [11]. Section VII
concludes the findings.

1This is likely because the dimension of supervectors is much larger than
the number of training supervectors.

II. THE I-VECTOR FRAMEWORK FOR SPEAKER
VERIFICATION

The i-vector approach to speaker verification can be divided
into three stages: i-vector extraction, intersession compensa-
tion and scoring.

A. I-vector Extraction

The i-vector approach is based on the idea of joint factor
analysis (JFA) [12]. In [1], Dehak et al. notice that the channel
factors in JFA also contain speaker-dependent information.
This finding motivates them to model the total variability
space (including channels and speakers) instead of model-
ing the channel- and speaker-spaces separately. Specifically,
given an utterance, the speaker- and channel-dependent GMM-
supervector [13] ms is written as:

ms = m+ Tws (1)

where m is the GMM-supervector formed by stacking the
mean vectors of the universal background model (UBM) [14]
which is speaker- and channel- independent, T is a low-rank
total variability matrix, and ws is a low-dimensional vector
called the i-vector. The training of the total variability matrix
is almost identical to that of the eigenvoice matrix in JFA. The
only difference is that the utterances of a training speaker are
considered to be produced by different speakers.

B. Inter-session Compensation

Because i-vectors contain both speaker and channel varia-
tion in the total variability space, inter-session compensation
plays an important role in the i-vector framework. It was
found in [1] that projecting the i-vectors by linear discriminant
analysis followed by within class covariance normalization
achieves the best performance.

1) Linear Discriminant Analysis: LDA is commonly used
for dimensionality reduction. The idea is to find a set of
orthogonal axes for minimizing the within-class variation
and maximizing the between-class separation. In the i-vector
framework, the i-vectors of a speaker constitute a class, leading
to the following objective function for multi-class LDA [3]:

Â = argmax
A

{
tr
[(

ATSwA
)−1 (

ATSbA
)]}

(2)

where Â comprises the optimal subspace to which the i-vectors
should be projected, Sw is the within-speaker scatter matrix,
and Sb is the between-class scatter matrix. These two scatter
matrices are written as follows:

Sw =
S∑

i=1

1

Mi

Mi∑
j=1

(wi
j − µi)(wi

j − µi)T (3)

and

Sb =
S∑

i=1

(µi − µ)(µi − µ)T (4)

where

µi =
1

Mi

Mi∑
j=1

wi
j (5)
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is the mean i-vector of the i-th speaker, S is the number of
training speakers, Mi is the number of utterances from the
i-th training speaker, and µ is the global mean of all i-vectors
in the training dataset. Eq. 2 leads to the projection matrix Â
that comprises the leading eigenvectors of S−1

w Sb.
2) Within Class Covariance Normalization: Within Class

Covariance Normalization (WCCN) [4] was originally used for
normalizing the kernels in SVMs. In the i-vector framework,
WCCN is to normalize the within-speaker variation. Dehak
et al. [1] found that the best approach is to project the LDA
reduced i-vectors to a subspace specified by the square-root
of the inverse of the following within-class covariance matrix:

W =

S∑
i=1

1

Mi

Mi∑
j=1

(Â
T
wi

j − µ̃i)(Â
T
wi

j − µ̃i)T (6)

where

µ̃i =
1

Mi

Mi∑
j=1

Â
T
wi

j (7)

and Â is the LDA projection matrix found in Eq. 2. The
WCCN projection matrix B can be obtained by Cholesky
decomposition of W−1 = BBT.

C. Scoring Methods

1) Cosine Distance Scoring: Cosine distance scoring
(CDS) [15] is commonly used in the i-vector framework. This
scoring approach is computationally efficient. The method
computes the cosine distance score between the claimant’s
i-vector (w(c)) and target-speaker’s i-vector (w(s)) in the
LDA+WCCN projection space:

Scos

(
w(c),w(s)

)
=

⟨
BTÂ

T
w(c),BTÂ

T
w(s)

⟩
∥∥∥BTÂ

T
w(c)

∥∥∥∥∥∥BTÂ
T
w(s)

∥∥∥ (8)

The score is then further normalized (typically by ZT-norm
[16]) before comparing with a threshold for making a decision.

2) Support Vector Machine Scoring: The idea of support
vector Machine (SVM) scoring [15] is to harness the dis-
criminative information embedded in the training data by
constructing an SVM that optimally separates the i-vectors of
a target speaker from those of background speakers. Unlike
cosine distance scoring, the advantage of SVM scoring is
that the contribution of individual background speakers and
the target speaker to the verification scores can be optimally
weighted by the Lagrange multipliers of the target-speaker’s
SVM. Given the SVM of target speaker s, the verification
score of claimant c is given by

SSVM(w(c),w(s)) = α
(s)
0 K

(
w(c),w(s)

)
−∑

i∈S(b)

α
(s)
i K

(
w(c),w(bi)

)
+ d(s)

(9)

where α
(s)
0 is the Lagrange multiplier corresponding to the

target speaker,2 α
(s)
i ’s are Lagrange multipliers corresponding

to the background speakers, S(b) is a set containing the indexes

2We assume one enrollment utterance per target speaker.

of the support vectors in the background-speaker set, and w(bi)

is the i-vectors of the i-th background speaker. Note that only
those background speakers with non-zero Lagrange multipliers
have contribution to the score. The kernel function K(·, ·) can
be of many forms. It was found [1] that the cosine kernel is
appropriate. Specifically,

K
(

w(c),w(s)
)
=

⟨
BTÂ

T
w(c),BTÂ

T
w(s)

⟩
∥∥∥BTÂ

T
w(c)

∥∥∥∥∥∥BTÂ
T
w(s)

∥∥∥ (10)

where we replace w(s) by w(bi) for evaluating the second term
of Eq. 9. Note that Eq. 8 and Eq. 10 are the same. However,
their role in the scoring process is different. The former is
directly used for calculating the score, whereas the latter is
used for kernel evaluation.

While SVM scoring can take the background speakers’ i-
vectors into consideration, its major shortcoming is that the
SVM decision boundary is mainly governed by the background
speakers’ i-vectors because there is only one target-speaker’s
i-vector to define the decision boundary. This situation is
known as training data-imbalance [17], [18]. We have recently
proposed a method called utterance partitioning to alleviate
this problem, which will be described in details in Section IV.

III. EFFECT OF UTTERANCE LENGTH ON I-VECTORS

The major advantage of the i-vector framework is that a
variable-length utterance can now be represented by a low-
dimensional i-vector. This low-dimensional space facilitates
the application of LDA and WCCN, which require low-
dimensionality to ensure numerical stability (unless abundant
training data are available). As the i-vectors are very compact,
it is interesting to investigate if short utterances are still able
to maintain the discriminative power of i-vectors. To this
end, we computed the intra- and inter-speaker cosine-distance
scores of 272 speakers extracted from the interview mic and
phonecall tel sessions of NIST 2010 SRE.

Each conversation of these speakers was divided into a num-
ber of equal-length segments. Then, sub-utterances of variable
length were obtained by concatenating variable numbers of
equal-length segments. A voice activity detector (VAD) [19]
was applied to extract the acoustic vectors corresponding to the
speech regions in the sub-utterances. The acoustic vectors of
each sub-utterance were then used for estimating an i-vector,
followed by LDA and WCCN projections to 150-dim i-vectors,
which were used for computing the cosine distance scores.

Fig. 1 shows the mean intra- and inter-speaker scores
(with error bars indicating two standard deviation) of the
three types of speech. For “8-min interview mic”, the scores
were obtained from the 8-min interview sessions of 29 male
speakers in NIST 2010 SRE, each providing 4 interview
conversations. This amounts to 174 intra-speaker scores and
6,496 inter-speaker scores for each utterance length. For “3-
min interview mic”, the scores were obtained from the 3-min
interview sessions of 196 male speakers, each providing 4
interview conversations. This amounts to 1,176 intra-speaker
scores and 305,760 inter-speaker scores for each utterance
length. For “5-min phonecall tel”, the scores were obtained
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(b) 3-min interview mic
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Fig. 1. Intra-speaker and inter-speaker cosine-distance scores versus utterance
length for (a) 8-min interview conversation, (b) 3-min interview conversation,
and (c) 5-min telephone conversation.

from the 5-min phonecall conversations of 47 male speakers,
each providing 4 conversations. This amounts to 282 intra-
speaker scores and 17,296 inter-speaker scores for each utter-
ance length. Evidently, both types of scores flatten out after
the segment length used for estimating the i-vectors exceeds
a certain threshold.

To further analyze the discriminative power of i-vectors
with respect to the utterance length, we plot in Fig. 2 the
minimum decision cost (MinDCF) versus the utterance length
for estimating the i-vectors using the intra- and inter-speaker
scores shown in Fig. 1. The lower the cost, the higher
the discriminative power of the i-vectors. The result clearly
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Fig. 2. Minimum decision costs (old MinDCF) achieved by i-vectors derived
from utterances of various lengths. The costs were based on the intra- and
inter-speaker cosine-distances shown in Fig. 1. For computation efficiency, no
score normalization was applied.

suggests that the discriminative power becomes saturated for
utterance length exceeding 2 minutes. This finding suggests
that it is not necessary to record very long utterances for
the i-vectors to achieve good performance. From another
perspective, if long conversations are already available, it may
be beneficial to divide the long conversations into a number
of sub-utterances to produce more i-vectors per conversation.
This can be achieved by our recently proposed utterance
partitioning method to be described next.

IV. UTTERANCE PARTITIONING WITH ACOUSTIC VECTOR
RESAMPLING

Utterance partitioning with acoustic vector resampling (UP-
AVR) [10] was proposed to maximize the utilization of target-
speaker’s information and to increase the influence of speaker-
class data on the SVM decision boundary. In the current work,
UP-AVR is applied to partition a conversation into a number
of sub-utterances, each producing one i-vector.

A. Procedure of UP-AVR

To produce a sufficient number of sub-utterances without
compromising their representation power, UP-AVR uses the
notion of random resampling in bootstrapping [20]. The idea
is based on the fact that changing the order of acoustic vectors
will not affect the resulting i-vector. Fig. 3 illustrates the
procedure of UP-AVR. For each conversation, a sequence
of acoustic vectors (see Section V-A) is extracted. Then,
the sequence is partitioned into N equal-length segments,
and an i-vector is estimated from each segment. Obviously,
the number of i-vectors increases when the segment length
decreases. However, decreasing the segment length will in-
evitably compromise the representation power of the resulting
i-vectors. To increase the number of i-vectors for each utter-
ance but maintaining their representation power, the order of
the acoustic vectors in the sequence is randomly rearranged
and the partitioning process is repeated. If this partitioning-
randomization process is repeated R times, RN + 1 i-vectors
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Fig. 3. The procedure of utterance partitioning with acoustic vector resam-
pling (UP-AVR). Note that index randomization, utterance partitioning, and
i-vector extraction can be repeated several times to obtain a sufficient number
of i-vectors.

can be obtained from a single conversation, where the addi-
tional one is obtained from the entire acoustic sequence. In
theory, we can obtain an infinite number of i-vectors when
R → ∞. However, when R increases, the segments will
contain many acoustic vectors that are identical to each other,
resulting in many similar i-vectors. Similar situation occurs if
two or more segments are used for estimating an i-vector. To
avoid this situation, R should be small. In this work, R was
limited to 4. Section VI-C analyzes the effect of varying R
and N on the discriminative power of i-vectors.

B. UP-AVR for LDA and WCCN

LDA requires a sufficient number of recording sessions
per training speaker for estimating the within-speaker and
between-speaker scatter matrices. However, collecting such
recordings is costly and inconvenient. As demonstrated in Sec-
tion III, when the utterance length is sufficiently long, further
increasing the length will not increase the i-vectors’ discrim-
inative power significantly. Therefore, given a long conver-
sation, some intrinsic speaker information will be wasted if
the whole conversation is used for estimating the i-vector. To
make a better use of the long conversation, we can apply
UP-AVR to produce more i-vectors for estimating the LDA
and WCCN projection matrices. It helps the LDA to find a
subspace with less intra-speaker variation by alleviating the
numerical problem.

C. UP-AVR for SVM Scoring

A simple strategy for solving the data imbalance problem
in SVM scoring is to increase the number of minority-class
samples for training the SVMs [18]. One may use more
enrollment utterances, which means more i-vectors from the
speaker class. However, this strategy shifts the burden to
the client speakers by requesting them to provide multiple

enrollment utterances, which may not be practical. With UP-
AVR, a number of i-vectors can be produced for training
the target-speaker dependent SVM even if the target-speaker
provides only one enrollment utterance, which can enhance
the influence of the target-speaker data on the SVM’s decision
boundary.

An alternative approach to alleviating the data-imbalance
problem is to train a speaker-independent SVM to classify a
pair of utterances as belonging to the “same speaker” or to
“different speakers” [21], [22]. Because many same-speaker
pairs can be obtained from training data, data-imbalance will
not be an issue. The downside is that the method requires
a lot more computation resources for training the speaker-
independent SVM.

D. Properties of Generated I-Vectors

It is of interest to investigate the statistical properties of
the generated i-vectors when the values of N and R vary. To
this end, we selected one hundred 3-min interview utterances
from NIST 2010 SREs and estimate the i-vectors produced
by UP-AVR for different N and R, followed by LDA and
WCCN projection to 150-dimensional vectors. Then, for each
full-length utterance, we computed the cosine distance scores
between the i-vector derived from the full-length utterance and
the RN i-vectors generated by UP-AVR. We also computed
the cosine distance scores among these generated i-vectors.
The scores across all of the 100 full-length utterances are
then averages, which results in two sets of average scores: one
representing the similarity between full-length utterances and
sub-utterances and another representing the similarity among
sub-utterances.

Fig. 4 shows how these scores vary with respect to the
number of partitions (N ) per conversation while keeping R
fixed. The figure clearly suggests that when N = 2 (i.e., sub-
utterances are long), the i-vectors of sub-utterances are similar
to that of the full-length utterances. They are also similar
among themselves. The similarity decreases but the score
variances increase when the number of partitions increases,
i.e., sub-utterances become shorter. This is reasonable because
when N is small, the acoustic vectors of a sub-utterance are
identical to a large portion of the acoustic vectors in the
full-length utterance. When N increases, the sub-utterances
become shorter, resulting in lower similarity but higher vari-
ability with respect to each others.

Fig. 5 shows the effect of varying the number of resampling
R on these two sets of scores when N is fixed. As opposed
to Fig. 4, when R increases, the similarity among the sub-
utterances of a full-length utterance increases but their score
variances decrease. The reason is that after several cycles of
resampling, the sub-utterances in the current resampling cycle
will contain some acoustic vectors that have already appeared
in the sub-utterances of the previous resampling cycles, caus-
ing higher similarity among the i-vectors of the sub-utterances.
However, these sub-utterances are still not identical and they
play important role in the training of target-speaker SVMs,
which will be further elaborated in Section VI-D.
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Fig. 5. Average cosine distance scores with error bars versus the number of
random resampling R. In all cases, the number of partitions in UP-AVR was
set to 4, i.e. N = 4.

V. EXPERIMENTAL SETUP

A. Speech Data and Acoustic Features

The extended core set of NIST 2010 Speaker Recognition
Evaluation (SRE) was used for performance evaluation. This
paper focuses on the interview and microphone speech of the
extended core task, i.e., Common Conditions 1, 2, 4, 7 and
9. Table I shows the number of trials and speech types for
training and testing under these common conditions. In CC1,
the same microphone was used for recording both training
and test segments, whereas in CC2 different microphones were
used. In CC7, high vocal-effort speech segments were used for
testing, whereas in CC9 low vocal-effort segments were used.
The equal error rate (EER) and the new minimum Detection
Cost Function (DCF) were used as performance indicators.

NIST 2005–2008 SREs were used as development data
(UBM, total variability subspace training, LDA, WCCN, T-
norm, and ZT-norm). Only the interview and microphone
speech of male speakers in these corpora were used. An in-
house VAD [19] was applied to detect the speech regions of

each utterance. Briefly, for each conversation side, the VAD
uses spectral subtraction with a large over-subtraction factor
to remove the background noise. The low energy and high
energy regions of the noise-removed speech were used for
estimating a decision threshold. This energy-based threshold
was then applied to the whole utterance to detect the speech
regions. Mel-frequency cepstral coefficients (MFCCs) were
then extracted from the speech regions of the original noisy
signals. Cepstral mean normalization [23] was then applied to
the MFCCs, followed by feature warping [24] using a window
of 3 seconds. 19 MFCCs together with energy plus their 1st-
and 2nd- derivatives were extracted from the speech regions
of each utterance, leading to 60-dim acoustic vectors.

B. Total Variability Modeling and Channel Compensation
The i-vector systems are based on a gender-dependent UBM

with 1024 mixtures. 9,511 utterances from NIST 2005–2008
SREs were selected for estimating a total variability matrix
with 400 total factors. Joint factor analysis (JFA) Matlab code
from Brno University of Technology (BUT) [25] was modified
for i-vector training and scoring. Before calculating the veri-
fication scores, LDA and WCCN projections were performed
for channel compensation. We selected 6,102 utterances from
191 speakers in NIST 2005–2008 SREs to estimate the LDA
and WCCN matrices. After LDA and WCCN projections, the
dimension of i-vectors was reduced to 150.

C. Scoring Methods and Score Normalization
We adopted two scoring methods: cosine distance scoring

and SVM scoring. To train the speaker-dependent SVMs,
we selected 633 speakers from NIST 2005–2008 SREs as
impostor-class data. ZT-norm [16] was used for score normal-
ization. Specifically, 288 T-norm utterances and 288 Z-norm
utterances (each from a different set of speakers) were selected
from the interview and microphone speech in NIST 2005–2008
SREs.

D. Utterance Length after Utterance partitioning
Fig. 1 and Fig. 2 demonstrate that the discriminative power

of i-vector increases most rapidly from 0.5 to 1.0 minute
and becomes saturated after 2 minutes. This information
gives us some guidelines on how to partition an utterance.
Therefore, except for the experiments investigating the effect
of the number of partitions, we partitioned all utterances
into four segments. This amounts to sub-utterances length of
0.75, 1.25, and 2 minutes for the 3-min, 5-min, and 8-min
utterances. While the sub-utterance length for 3-min utterances
is relatively short, partitioning the 3-min utterances into 4
segments gives us more i-vectors for training the LDA+WCCN
matrices. The results suggest that this is a reasonable compro-
mise between the number of i-vectors and their discriminative
power.

VI. RESULTS AND DISCUSSIONS

A. Effects of Training-set Size on I-Vectors
This experiment is to analyze the effect of the number of

training utterances and training speakers on the discriminative
power of LDA and WCCN projected i-vectors.
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TABLE I
THE NUMBER OF MALE TARGET-SPEAKER TRIALS AND IMPOSTOR TRIALS AND THE SPEECH TYPES FOR TRAINING AND TESTING UNDER THE COMMON

CONDITIONS THAT INVOLVE MICROPHONE RECORDINGS IN NIST 2010 SRE.

Common Condition CC1 CC2 CC4 CC7 CC9 Mic

Speech Type
Train int-mic int-mic int-mic phn-mic phn-mic int-mic & phn-mic
Test int-mic int-mic phn-mic phn-mic phn-mic int-mic & phn-mic

No. of target trials 1,978 6,932 1,886 179 117 11,092
No. of impostor trials 346,857 1,215,586 364,308 39,898 29,667 1,996,316

Mic: Combining the trials of all common conditions that involve microphone recordings. phn-mic: Telephone conversation recorded by microphones. int-mic:
Interview sessions recorded by microphones.

The training set comprises the i-vectors of 191 male speak-
ers in NIST 2005–2008 SRE, with each speaker having 10
i-vectors (sessions). For each experiment, a subset of i-vectors
was extracted from this training set to train the LDA and
WCCN projection matrices. More precisely, the numbers of
i-vectors per speaker were set to 6, 8, and 10. For each
configuration, the number of speakers S was progressively
increased from 60 (80 when there are only 6 utterances
per speaker)3 to 191. The resulting LDA+WCCN matrices
were then used to project two thousand 400-dim i-vectors
extracted from 90 speakers in NIST 2010 SRE to i-vectors of
dimensions S−1 or 150, whichever is less.4 The discriminative
power of the projected i-vectors was quantified by minimum
DCF derived from 22,198 intra- and 1.9 million inter-speaker
cosine-distance scores without score normalization.

Fig. 6 shows the minimum DCF achieved by the projected
i-vectors when the number of speakers and the number of
utterances per speaker used for training the LDA+WCCN
projection matrices increase. The results suggest that when
the number of utterances per speaker is small (≤ 8) the
discriminative power of i-vectors generally increases when
the number of speakers used for training the transformation
matrices increases. The increase is more prominent when
the number of utterances per speaker is very small (say 6),
suggesting that more speakers are required when the number
of utterances per speaker is very small. However, when the
number of utterances per speaker is sufficiently large (say 10),
increasing the number of speakers does not bring significant
benefit until the number of speakers is larger than 105. Among
the three different numbers of utterances per speaker, using
10 utterances per speaker achieves the lowest minimum DCF
regardless of the number of speakers used for training the
transformation matrices, suggesting that it is better to use
more utterances per speaker than using more speakers but
less utterances per speaker. The small fluctuation in minDCF
suggests that the channel variability of some speakers in NIST
2005–2008 SREs may not match the channel variability in
NIST 2010 SRE, causing slight performance degradation when
these speakers were added to the training pool.

3When the number of utterances per speaker was limited to 6 and the
number of speakers is smaller than 80, the within-class covariance matrix Sw

is close to singular, causing numerical difficulty in estimating the projection
matrices.

4Because rank
(
S−1
w Sb

)
= min {400, S − 1}.
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Fig. 6. Minimum decision cost (old MinDCF) versus the number of speakers
used for estimating the LDA and WCCN projection matrices. Each speaker
has either 6, 8, or 10 utterances for estimating the i-vectors.

B. Small Sample-Size Problem in LDA and WCCN

The numerical difficulty in estimating the LDA and WCCN
transformation matrices is due to insufficient rank in the
within-speaker scatter matrix (Eq. 3) when the training set
size is small. We have investigated two classical approaches
to alleviating this small sample-size problem [26]. They are
pseudo-inverse LDA and PCA+LDA.

1) Pseudo-inverse LDA. The rank deficiency problem can
be avoided by replacing the inverse of the within-speaker
scatter matrix by its pseudo inverse [27], [28]. The
idea is that during singular value decomposition, any
components with singular values smaller than a threshold
will be automatically discarded by the pseudo-inverse
procedure.

2) PCA+LDA. We used PCA to project the training i-vectors
to a lower dimension space prior to computing the within-
speaker scatter matrix [29], [30]. With the reduction in
the i-vector dimension, the rank requirement of LDA
and WCCN can be reduced to a comfortable level for
reliable estimation of the LDA and WCCN transformation
matrices.

Table II shows the performance achieved by different ap-
proaches to alleviating the small-sample size problem when
the number of recording sessions per training speaker (M )
increases from 2 to 8 or above. The performance is obtained



IEEE TRANSACTION ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XX, NO. X, XXXX 8

by concatenating the scores under Common Conditions 1, 2,
4, 7, and 9 in NIST 2010 SRE. The performance achieved
by “Without LDA and WCCN” is considered as the baseline.
For “LDA+WCCN”, the performance is very poor when
M ≤ 3, because the within-speaker scatter matrix is close to
be singular. Only when M ≥ 4, the benefit of LDA+WCCN
becomes apparent. These observations also agree with the
findings in [31].

Table II also shows the following properties:

1) when M ≤ 3, pseudo-inverse LDA can help to avoid
the singularity problem. However, this method leads to
i-vectors that perform even poorer than those without
LDA+WCCN projections. When the within-class scatter
matrices have full rank (M ≥ 4), the performance of
pseudo-inverse LDA is the same as the classical LDA.

2) Preprocessing the i-vectors by PCA can not only avoid
the singularity problem but also help the LDA to find
a better projection matrix. However, when the rank of
within-class scatter matrices is too low (e.g., when M =
2), the performance of PCA preprocessing is poorer than
those without LDA+WCCN projections. Moreover, the
effect of PCA diminishes when the number of recordings
per training speaker is sufficient (M ≥ 8).

3) UP-AVR is an effective way to produce more informative
i-vectors from a single utterance, thus effectively avoiding
the singularity problem in LDA. It also achieves the best
performance among all methods investigated.

Fig. 7 shows the effect of varying the dimension of PCA
projection on the performance of PCA+LDA. The results
suggest that when the number of sessions per speaker (M )
is equal to two, PCA cannot help the LDA for all projection
dimension. In fact, the performance is even poorer than that
without LDA (dotted line). This is caused by insufficient data
for training the LDA, even though PCA can help solving the
singularity problem. The result also suggest that setting the
PCA projection dimension close to the rank of within-class
scatter matrices is not a good idea when M ≤ 3.
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Fig. 7. EER versus the dimension after PCA projection. M = x means each
speaker only has x recordings for training the LDA and WCCN matrices.

C. UP-AVR for LDA and WCCN

This experiment investigates the effectiveness of UP-AVR
for solving the singularity problem in LDA. Similar to Sec-
tion VI-B, the number of recording sessions per training
speaker was increased from 2 to 8 and above. The results
in Table II show that when UP-AVR is applied to increase
the number of i-vectors per training speaker, the performance
of LDA+WCCN improves significantly. Although many of
the i-vectors produced by UP-AVR are extracted from the
sub-utterances of the same recording sessions, they possess
sufficient speaker-dependent information for training the LDA
and WCCN projection matrices and can help LDA to find
a subspace with less intra-speaker variation by alleviating the
numerical problem. Nevertheless, the contribution of UP-AVR
to LDA and WCCN diminishes when the number of recordings
per training speaker is sufficient (over 8 per speaker in our
experiments).

Figs. 8(a) and 8(b) depict the trend of EER and minimum
DCF when the number of recording sessions per speaker and
the number of i-vectors per recording session for training the
LDA and WCCN matrices increase. The results demonstrate
that the most significant performance gain is obtained when
the number of i-vectors per recording session increases from
1 to 5, and the performance levels off when more i-vectors
are added.

Fig. 9 shows the performances of UP-AVR for different
numbers of partitions (N ) and resampling (R) for different
numbers of recordings per speaker. According to Fig. 9, when
the number of recordings per speaker (M ) is less than five,
increasing the number of partitions and resampling times can
improve the performance. However, when M ≥ 6, the effect
of varying N and R diminishes, suggesting that UP-AVR is
most effective for training the LDA and WCCN matrixes when
the number of recording sessions per speaker is very limited.

D. UP-AVR for SVM Scoring

In this experiment, we used all of the available interview
and microphone speech from NIST 2005–2008 SRE to train
the LDA and WCCN matrices. The focus of the experiment is
on comparing SVM scoring against cosine distance scoring.

Table III compares the performance between SVM scoring
and cosine distance scoring. Table III shows that the perfor-
mance of SVM scoring is slightly worse than that of cosine
distance scoring. This may be caused by the data imbalance
problem in SVM training. However, after applying UP-AVR
to SVM training, the performance of SVM improves. More
specifically, increasing the number of target-speakers i-vectors
from one i-vector per target-speaker to 9 i-vectors per target-
speaker reduces the EER of SVM scoring from 3.26% to
2.71%, which amounts to 17% relative reduction. Similarly,
the method reduces the minimum DCF from 0.52 to 0.51,
which amounts to 2% relative reduction. This performance
improvement makes SVM scoring outperforms cosine distance
scoring significantly, as evident by the results (CDS versus
SVM+UP-AVR) in Table III. Specifically, when UP-AVR was
applied to SVM scoring, the EER and minimum DCF reduce
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TABLE II
THE PERFORMANCE OF USING DIFFERENT METHODS FOR SOLVING THE SMALL SAMPLE-SIZE PROBLEM IN LDA AND WCCN.

EER (%) MinNDCF
Methods M=2 M=3 M=4 M=5 M=6 M=7 M≥8 M=2 M=3 M=4 M=5 M=6 M=7 M≥8

Without LDA and WCCN 12.60 0.90
LDA + WCCN 23.39 22.25 6.98 5.51 4.59 4.22 2.98 1.00 1.00 0.87 0.81 0.76 0.75 0.63
PI-LDA + WCCN 19.02 20.90 6.98 5.51 4.59 4.22 2.98 0.99 1.00 0.87 0.81 0.76 0.75 0.63
PCA + LDA + WCCN 13.37 9.05 6.29 5.14 4.32 3.86 2.98 1.00 0.95 0.88 0.82 0.77 0.73 0.63

UP-AVR(2) + LDA + WCCN 6.64 5.78 4.99 4.52 4.08 3.90 2.94 0.91 0.87 0.83 0.79 0.75 0.74 0.66
UP-AVR(4) + LDA + WCCN 6.16 5.09 4.46 4.05 3.85 3.68 2.90 0.93 0.89 0.85 0.79 0.76 0.75 0.66
UP-AVR(8) + LDA + WCCN 6.23 5.09 4.48 3.88 3.87 3.65 2.97 0.92 0.89 0.86 0.80 0.78 0.76 0.69

M = x means each speaker only has x recordings for training the LDA and WCCN matrices. M ≥ 8 means each speaker provides at least 8 recordings,
with an average of 31 recordings per speaker. “LDA”: the conventional LDA; “PI-LDA”: pseudo-inverse LDA; “PCA + LDA”: perform PCA before LDA;
“UP-AVR(N )”: dividing each of the full-length training utterances into N partitions using UP-AVR, with the number of re-sampling R set to 4.
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Fig. 8. (a) EER and (b) minimum DCF versus number of i-vectors per
recording session for different numbers of recording session per speaker
for training the LDA and WCCN matrices. The i-vectors were obtained by
utterance partitioning with acoustic vector resampling (UP-AVR, N = 4;
R = 1, 2, 4). M is the number of recordings per speaker used for training
the matrices, M = 0 means without LDA and WCCN, and M ≥ 8 means
at least 8 utterances per speaker were used for training.

to 2.71% and 0.51, respectively, which amount to 9% and 19%
relative reduction.
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Fig. 9. The effect of varying the number of partitions (N ) and the number
of resampling (R) on the performance of UP-AVR. R = 0 means without
applying UP-AVR to the utterances.

Note that UP-AVR can also be applied to cosine distance
scoring. Specifically, instead of training an SVM for each
target speaker, we used the RN i-vectors produced by UP-
AVR together with the one estimated from the full-length
enrollment utterance to represent a target speaker. During
verification, given a test utterance, we computed the average
cosine distance score between the i-vector of the test utterance
and each of these (RN + 1) target-speaker i-vectors. The
rows labeled with “CDS+UP-AVR” in Table III show the
performance of this strategy. Evidently, unlike the situation
in SVM scoring, UP-AVR cannot improve the performance
of cosine distance scoring. This result is reasonable because
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the discriminative power of the generated (RN ) i-vectors is
poorer than that derived from the full-length utterances, which
has detrimental effect on the average score. On the other hand,
in SVM scoring, given the RN +1 target-speaker’s i-vectors,
the SVM training algorithm can select a more relevant subset
from these target-speaker’s i-vectors and the background i-
vectors to form a decision boundary that best discriminate the
target speaker from impostors. As the SVM score is a linear
weighted sum of the cosine-distance scores of these relevant
(support) i-vectors and the test i-vector, each of the target-
speaker’s i-vectors has different contribution to the overall
score and the degree of contribution is optimized by the SVM
training algorithm. The aims of UP-AVR in SVM scoring is
to overcome the data-imbalance problem in SVM training.
Once this data-imbalance problem can be alleviated, the SVM
weights can be reliably estimated.

Results in Table III also suggest that when UP-AVR is
applied, a small penalty factor C is more appropriate than
a large one.5 This is reasonable because a small C leads to
more target-speaker class support vectors, which improve the
influence of target-speaker class data on the decision boundary
of the SVMs.

VII. CONCLUSIONS

This paper applies utterance partitioning with acoustic vec-
tor resampling to i-vector speaker verification using the latest
NIST SRE for performance evaluation. This work demon-
strates that the approach can be effectively applied to i-vector
systems in two aspects:

1) Estimation of LDA and WCCN projection matrices. Be-
cause a lot more i-vectors can be produced per training
utterance, numerical difficulty arising from limited train-
ing sessions can be avoided. Our experimental results
show that even if each training speaker has two recording
sessions only, utterance partitioning can help to find more
robust LDA and WCCN transformation matrices, leading
to significant improvement in verification performance.

2) SVM scoring. It is common to use cosine distance scoring
rather than SVM scoring because of the data-imbalance
problem in the latter, i.e., for each speaker-dependent
SVM, there is only one target-speaker’s i-vector but
many background-speaker i-vectors for training. This
data-imbalance causes the SVM decision function to be
dictated by the background-speakers’ support vectors.
With utterance partitioning, the data-imbalance problem
in SVM scoring can be mitigated by using more target-
speaker’s i-vectors for training the speaker-dependent
SVMs even if each target speaker provides one enrollment
utterance only. Our results demonstrate that increasing
the number of target-speaker’s i-vectors from one i-
vector per target-speaker to 9 i-vectors per target-speaker
reduces the EER and minimum normalized DCF of SVM
scoring by 17% and 2%, respectively. This performance

5As we used a scalar for the ’boxconstraint’ parameter in
svmtrain.m provided by Mathworks, the penalty factors for speaker and
impostor classes will be rescaled according to the number of training samples
in these two classes.

improvement makes SVM scoring outperforms cosine
distance scoring by 19% and 9% in terms of minimum
normalized DCF and EER, respectively.
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