PAU Submission of NIST 2018 Speaker Recognition Evaluation

Youzhi TU*, Yingke ZHU*, Man Wai MAK*, Dongpeng CHEN[†], Weiwei LIN*, Brian K.W. MAK*, Zhuxin CHEN[†] and Weibin ZHANG[†]
*Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong SAR of China

*Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong SAR of China

†Voice AI, China

Summary

- We show the fusion result of a GMM i-vector system and five DNN x-vector systems.
- PolyU has one i-vector system (S1) and two x-vector systems (S2 and S3) which are all trained on 8kHz speech data.
- The HKUST system uses 8kHz x-vectors for CMN2 (S4-CMN2) and 16kHz x-vectors for VAST (S4-VAST), applying the self-attention mechanism.
- VoiceAl implemented a larger 16kHz DNN (S5) to extract 1024-dimensional x-vectors for VAST data. The VAD is based on a bidirectional long short-term memory network.

X/I-Vector/PLDA Training

- S1 (i-vector system) is based on gender-independent UBM with 2048 mixtures and 600 dimensional total variability matrix.
- The DNN in S2 was retrained using the Kaldi SRE16 x-vector recipe.
- S3 uses the pre-trained DNN from the Kaldi repository.
- In S4, the pooling-layer in the standard x-vector extractor was replaced by a self-attentive layer.
- S5 has a larger DNN architecture than the standard x-vector extractor. The dimension of the x-vector is 1024 rather than 512.
- We trained gender-independent out-of-domain PLDA models first, and then adapted them using suitable in-domain dataset for S1, S2, S3 and S4-CMN2. For S4-VAST and S5, we directly trained PLDA models using in-domain data.
- X/I-vector pre-processing: centering + LDA + length-norm
 - S1: 600 300
- S2: 512 300
- S3, S4: 512 150
- S5: 1024 150

Work Flow of Evaluation

Datasets used for PLDA training, PLDA adaptation, calibration, and PLDA scoring

0	Embedding	Sub- task	PLDA	PLDA Communication	PLDA scoring			Score calibration			
Sys			Training	adaptation	Snorm	Adapt source	Scoring source	Centering	Adapt source	Scoring source	Centering
S1	i-vector	CMN2	sre04-12 +	sre18- unlabeled	Yes	sre16-eval	sre18-dev	sre18-unlabeled	sre16-major	sre16-eval	sre16-major
31		VAST	mx6 + aug	sitw-dev- enroll		sitw-eval				sitw-eval	sre18-unlabeled
S2	x-vector	CMN2	sre04-10 +	sre18- unlabeled sitw-dev- enroll	Voc	sre16-eval	sre18-dev	sre18-unlabeled	sre16-major	sre16-eval	sre16-major
		VAST	mx6 + aug		Yes	sitw-eval				sitw-eval	sre18-unlabeled
S3	x-vector	CMN2	sre04-10 +	sre18- unlabeled	No	sre1	sre18-dev	sre18-unlabeled		sitw-eval	sitw-eval-test
		VAST	mx6 + aug	voxceleb1- enroll			51610-uev	sre04- 10+mx6+aug			voxceleb1- enroll
S 4	x-vector	CMN2	sre04-10 + mx6 + aug	sre18- unlabeled	Yes	sre18- unlabeled	oro10 dov	sre18-unlabeled	sre16-major	sitw-eval	sitw-eval-test
S4	x-vector16k	VAST	voxceleb1-2 + aug		No		sre18-dev	sitw-eval-test		sitw-dev	sre18- unlabeledU
S5	x-vector16k	VAST	voxceleb1-2		No		sre18-dev				

The column "Adapt source" indicates the data source for computing the S-norm parameters. sre18-unlabeled: unlabeled data in SRE18. sre18-unlabeledU: 16kHz upsampled version of sre18-unlabeled. i-vector and x-vector: speaker embedding based on 8kHz speech data. x-vector16k: speaker embedding based on 16kHz speech data.

System Fusion

- We have three fused systems denoted as Fuse1, Fuse2 and Fuse3, respectively.
- Fuse1 is a linear weighted fusion of S1+S2 (S1 and S2 were first fused by Bosaris) and S4.
- Fuse2 is a linear weighted fusion of Fuse1 and S3.
- Fuse3 is formed by fusing Fuse1 and S5 using Bosaris.

Individual systems for fusion	Sub-task	Fusion equation
C4 C0 C4	CMN2	$0.4(\omega_0 + \omega_1 S1 + \omega_2 S2) + 0.6S4$
51, 52, 54	VAST	$0.9(\omega_0' + \omega_1'S1 + \omega_2'S2) + 0.1S4$
C4 C0 C1	CMN2	$0.8(0.4(\omega_0+\omega_1S1+\omega_2S2)+0.6S4)+0.2S3$
51, 52, 53, 54	VAST	$0.6(0.9(\omega_0' + \omega_1'S1 + \omega_2'S2) + 0.1S4) + 0.4S3$
S1, S2, S4, S5	VAST	$\omega_{b0} + \omega_{b1} (0.9(\omega_0' + \omega_1'S1 + \omega_2'S2) + 0.1S4) + \omega_{b2}S5$
	S1, S2, S4 S1, S2, S3, S4	S1, S2, S4 CMN2 VAST CMN2 CMN2 CMN2 CMN2 CMN2 VAST VAST

S1-S5 are scores of individual systems. ω_i and ω_i are fusion weights computed by Bosaris.

Performance

SRE18 Development

Individual systems

Sys		CMN2		VAST			Both
Oyu -	EER	mDCF	aDCF	EER	mDCF	aDCF	aDCF
S1	13.14	0.684	0.778	7.82	0.490	0.819	0.798
S2	8.86	0.567	0.644	9.47	0.481	0.642	0.643
S3	8.60	0.546	0.556	7.41	0.498	0.535	0.545
S4	7.39	0.553	0.565	4.53	0.416	0.671	0.618
S5				4.94	0.523	0.576	

Fused systems

Sys		CMN2		VAST			Both
o y c	EER	mDCF	aDCF	EER	mDCF	aDCF	aDCF
Fuse1	6.72	0.499	0.509	5.35	0.407	0.407	0.458
Fuse2	6.57	0.496	0.510	4.94	0.412	0.486	0.498
Fuse3				5.35	0.449	0.572	

SRE18 Evaluation

Individual systems

Sys		CMN2		VAST			Both
	EER	mDCF	aDCF	EER	mDCF	aDCF	aDCF
S1	13.70	0.741	0.771	18.61	0.682	0.712	0.741
S2	9.02	0.607	0.647	13.02	0.608	0.630	0.639
S3	10.05	0.594	0.597	13.76	0.636	0.655	0.626
S4	8.47	0.565	0.568	18.73	0.737	0.902	0.735
S5				14.29	0.551	0.671	

Fused systems

Sys		CMN2			Both		
	EER	mDCF	aDCF	EER	mDCF	aDCF	aDCF
Fuse1	7.68	0.520	0.523	13.02	0.591	0.643	0.583
Fuse2	7.64	0.513	0.519	12.06	0.572	0.600	0.560
Fuse3				13.02	0.522	0.543	

References

- 1. Yingke Zhu, Tom Ko, David Snyder, Brian Mak, and Daniel Povey, "Self-attentive speaker embeddings for text-independent speaker verification," *Proc. Interspeech 2018*, pp. 3573–3577, 2018.
- 2. Carlos Busso Fei Tao, "Bimodal recurrent neural network for audiovisual voice activity detection," *Proc. Interspeech 2017*, pp. 1938–1942, 2017.