Algorithmic extensions of Su-Wong-Ho linear MMSE estimator for large-magnitude Levy-process phase-noise

Y.-T. Su and K.T. Wong

A new linear minimum-mean-square error (LMMSE) estimator has recently been proposed by Su, Wong and Ho to estimate phase-noise of (possibly) large magnitude, temporal non-stationarity, and Levy distribution (which includes the Wiener distribution as a special case). This estimator can handle many different degrees of latency. The estimator is adjustable to any number of taps, which may be pre-computed offline, based on only the signal-to-(additive-)noise ratio and the phase-noise’s characteristic function. This pre-computation requires no matrix inversion. The above estimator is algorithmically extended for more flexibility in latency, to select the optimum estimator-tap support-window from a wider data-observation window, and to handle newly arrived samples in a computationally efficient manner.

Introduction: The phase-noise \(\theta_k \), at the \(k \)th time-point, is defined as the difference between the phase of the received carrier sinusoid and the phase of the receiver’s local oscillator. This phase-noise multiplicatively corrupts an information-signal through the stochastic process, \(e^{j\theta_k} \). High-magnitude non-stationary phase-noise may be estimated by the recently advanced Su-Wong-Ho phase-noise estimator [1].

After reviewing the Su-Wong-Ho LMMSE estimator, this Letter offers extensions along these three directions: it extends the Su-Wong-Ho phase-estimator’s latency from \(L \in \{ 0, 1, \ldots, |Q - 1/2| \} \) or [3], to \(L \in \{ 0, 1, \ldots, |Q - 1| \} \) where \(Q \) denotes the number of taps in the estimator. In the above, \(|a|\) refers to the largest integer not exceeding the real number \(a \). It investigates this issue: if more than \(Q \) temporally contiguous observables are available to a Q-tap estimator, which \(Q \) observables should be chosen to minimise the estimator’s mean square error? Then it addresses the issue: for a Q-tap estimator \(e^{j\theta_k} \) at a set latency of \(L \), what happens if the observation-window and the set of to-be-estimated time-samples both slide rightward along the discrete-time axis? How may this right-shifted Su-Wong-Ho LMMSE estimator’s weights be calculated from the original ‘presift’ weights?

Review of Su-Wong-Ho phase-noise estimator [3]: Consider a baseband observable datum \(n_k = A \exp(j \theta_k) + n_k \) at the \(k \)th uniformly spaced time-sampling instant, where \(A \) denotes the signal’s constant (and possibly unknown) magnitude, \(n_k \) represents the 4th time-sample’s unknown zero-mean complex-value white noise of a (possibly unknown) variance \(E[n_k^2] = \sigma^2_k \). The signal-to-noise (SNR) power ratio, \((A/\sigma_k)^2 \), is either an a priori known or estimated in an earlier step. Moreover, \(\theta_k \) symbolises the unknown and to-be-estimated phase-noise at the \(k \)-th time-instant. The discrete-time sequence \(\{ \theta_k, \forall k \in \{ 1, 2, \ldots \} \} \) equals a symmetric Levy process sampled at time \(k = 1, 2, \ldots \), with a known priori \(E[e^{j\theta_k}] \). The phase-noise random sequence \(\{ \theta_k, \forall k \geq 1 \} \) is independent of the additive noise random sequence \(\{ n_k, \forall k \geq 1 \} \). The above has not required \(|\theta_k| \ll 1 \).

The Su-Wong-Ho estimator [3] is

\[
e^{j\hat{\theta}_k} = \frac{1}{A} \sum_{q=1}^{Q} w_q^{(k)} e^{jQ-L-q} \tag{1}
\]

for a particular latency of \(L \) and a particular estimator-length of \(Q \geq 2L + 1 \), where

\[
w_q^{(k)} = \frac{A^2}{\sigma^2_k} - \alpha L - 1 - \frac{1 - c^2}{c} \tag{2}
\]

for \(1 \leq q < Q - L \) and

\[
w_q^{(k)} = \frac{\alpha_q}{c^{q+1}} \quad \text{for} \quad Q - L < q \leq Q \tag{3}
\]

where \(\beta = 1/c^2, \delta_k = 1/c, \alpha_k = 1/\beta - \alpha_{k-1} \geq 1 \forall \). This is the linear estimator with the least ‘mean-square error’, \(\text{MSE}(L, w) = [e^{j\hat{\theta}_k} - e^{j\theta_k}]^2 \).

Generalisation of Su-Wong-Ho phase-estimator to any \(Q > L \geq 0 \): By definition,

\[
\text{MSE}(L, w) = 1 + \frac{\sigma^2_k}{A^2} \left[\sum_{q=1}^{Q} w_q^{(k)} \right]^2 - 2 \sum_{q=1}^{Q} w_q^{(k)} e^{jQ-L-q} + \sum_{q=1}^{Q} \sum_{m=1}^{Q} w_q^{(k)} w_m^{(k)} e^{j(Q-L-q)} + \sum_{q=1}^{Q} \sum_{m=1}^{Q} w_q^{(k)} w_m^{(k)} e^{jQ-L-q} \tag{4}
\]

for \(Q > L \geq 0 \).

Define \(\hat{w} = [\hat{w}_1, \hat{w}_2, \ldots, \hat{w}_Q] = [w_1, w_2, \ldots, w_Q] \). Hence,

\[
\sum_{q=1}^{Q} w_q^{(k)} e^{jQ-L-q} = \sum_{q=1}^{Q} w_{Q+1-q} e^{-jQ-L+q} = \sum_{q=1}^{Q} w_{Q+1-q} e^{j(Q-L-q)} = \sum_{q=1}^{Q} w_{Q+1-q} e^{jQ-L-q} \tag{5}
\]

Therefore,

\[
\text{MSE}(Q - L - 1, \hat{w}) = 1 + \frac{\sigma^2_k}{A^2} \sum_{q=1}^{Q} w_q^{2} - 2 \sum_{q=1}^{Q} w_q^{(k)} e^{jQ-L-q} + \sum_{q=1}^{Q} \sum_{m=1}^{Q} w_q^{(k)} w_m^{(k)} e^{jQ-L-q} \tag{6}
\]

\[
\text{MSE}(L, w) = \sum_{q=1}^{Q} w_q^{(k)} e^{jQ-L-q} \tag{7}
\]

As (5) holds \(\forall Q > L \geq 0 \) and \(\forall w \in \mathbb{C}^Q \), it is true that \(w_1^{Q}, \ldots, w_Q^{Q} \) minimises \(\text{MSE}(L, w) : w \in \mathbb{C}^Q \), i.e., \(w_1^{Q}, \ldots, w_Q^{Q} \) minimise \(\text{MSE}(Q - L - 1, \hat{w}) : w \in \mathbb{C}^Q \). The Su-Wong-Ho phase-estimator has thus been extended to \(\forall Q > L \geq 0 \).

How to place estimator-taps-window within larger data-observation window: The Su-Wong-Ho LMMSE estimator’s \(Q \)-tap weights are independent of \(k \), but depend on the latency \(L \). With the most recent observable at the \(m \)th sampling instant, obviously it must be true that \(L \leq M - k \). If more than temporally contiguous observables are available to the \(Q \)-tap Su-Wong-Ho estimator, guidelines are given below to pick which \(Q \) contiguous observables for the estimator. This Section will rigorously prove that for a preset \(Q \), the \(Q \)-tap data-window should centre around the \(q \)th time-sample as much as possible.

Theorem 4.1: Suppose that \(\{ \theta_k, k \leq M \} \) is to be estimated using a continuous \(Q \)-tap observation-window taken from \(\{ n_k, m = 1, 2, \ldots, M \} \). The following will minimise the MSE:

(i) if \(k \in \{ Q - 1/2, \ldots, M - Q - 1/2 \} \), set \(L = |Q - 1/2| \).

(ii) if \(k > M - Q - 1/2 \), set \(L = M - k \).

(iii) if \(k < Q - 1/2 \), set \(L = Q - k \) and \(e^{j\hat{\theta}_k} = 1/A \sum_{q=1}^{Q} w_q^{(k)} \).

Proof: Define

\[
\text{MMSE}(L) = \inf_w \text{MSE}(L, w) = \text{MSE}(L, w^{(Q-L)}) \tag{8}
\]

where \(w^{(Q-L)} = [w_1^{(Q-L)}, w_2^{(Q-L)}, \ldots, w_{Q-L}^{(Q-L)}] \) denotes the LMMSE weights at latency \(L \). Let \(L^* \) denote the ‘best’ latency over \(L = 0, 1, \ldots, Q - 1 \), in the sense of

\[
\text{MMSE}(L^*) = \min_L \text{MMSE}(L) \tag{9}
\]

As shown in [3], the LMMSE weights \(w_1^{Q-L}, w_2^{Q-L}, \ldots, w_{Q-L}^{Q-L} \) must be positive real numbers, so the following will consider only \(w_q \in (0, \infty), \forall q = 1, \ldots, Q \). These LMMSE-estimator weights satisfy \(\partial^2/\partial w_q \text{MMSE}(L, w) = 0, \forall q \):

\[
w_q^{(Q-L)} = \frac{\sigma^2_k}{A^2} \sum_{m=1}^{Q-L} w_m^{(Q-L)} e^{-jQ-L-q} = e^{jQ-L-q} \tag{10}
\]

Equivalently,

\[
\sum_{m=1}^{Q-L} w_m^{(Q-L)} e^{-jQ-L-q} = e^{jQ-L-q} \frac{\sigma^2_k}{A^2} \tag{11}
\]

As (5) implies

\[
\text{MSE}(Q - L - 1) = \text{MMSE}(L), \forall L = 0, 1, \ldots, Q - 1 \tag{12}
\]

it would suffice to consider only \(L \leq |Q - 1/2| \).
Suppose $L < |Q - 1/2|$, or equivalently $Q \geq 2L + 3$. Then,

$$\text{MSE}(L) - \text{MSE}(L + 1) = \frac{Q}{\sum_{q=1}^{Q} (w_{q}^{(L+1,0)})^2 (\alpha_{q}^2)} = 2 \left(1 - w_{Q,L-1} (\alpha_{Q,L-1})^2 \right) \frac{a_{Q,L-1}^2}{A^2}$$

$$+ \sum_{q=1}^{Q} w_{q}^{(L,0)} \left(w_{q}^{(L+1,0)} - w_{q}^{(L,0)} \right) \frac{\alpha_{q}^2}{A^2}$$

$$- \left\{ \sum_{q=1}^{Q} (w_{q}^{(L+1,0)})^2 (\alpha_{q}^2) \right\} - 2 \left(1 - w_{Q,L-1} (\alpha_{Q,L-1})^2 \right) \frac{a_{Q,L-1}^2}{A^2}$$

$$+ \sum_{q=1}^{Q} w_{q}^{(L+1,0)} \left(w_{q}^{(L+1,0)} - w_{q}^{(L,0)} \right) \frac{\alpha_{q}^2}{A^2}$$

$$= \frac{\left(w_{Q,L} - w_{Q,L-1} \right) (\alpha_{Q,L-1})^2}{A^2}$$

$$= \frac{\left(\beta - \alpha_{Q,L-1} \right) \left(\beta - \alpha_{Q,L-2} - \alpha_{Q,L-1} \right)}{c} \frac{1 - c^2}{c} > 0$$

The above (12) is obtained by setting $q = Q - L$ in (9) and setting $q = Q - L - 1$ in (10). That gives

$$\sum_{q=1}^{Q} w_{q}^{(L,0)} (\alpha_{q}^2) \left(w_{q}^{(L+1,0)} - w_{q}^{(L,0)} \right) \frac{\alpha_{q}^2}{A^2}$$

To prove (13), it would be sufficient to show that $(\alpha_{Q,L-2} - \alpha_{L}) > (\alpha_{Q,L-2} - \alpha_{Q,L-1})$. Towards this end, note that $\alpha_{Q,L-1} = 1/\beta - \alpha_{Q,L-1}$ and $\alpha_{Q,L-2} = 1/\beta - \alpha_{Q,L-2}$. So, $(\alpha_{Q,L-2} - \alpha_{L}) = (1/\beta - \alpha_{Q,L-2} - (1/\beta - \alpha_{Q,L-1}))$. Because $Q \geq 2L + 3$, and $\alpha_{Q,L-2}$ both strictly decrease with m, it holds that $Q - L < 1$ and $L > 0$. This proves (13) and completes the proof of the theorem. □

Recursive update of Su-Wong-Ho estimator weights to incorporate new sample: For a Q-tab estimator, what happens if both the Q-tab observation-window and the to-be-estimated time-sample ($e^{j\theta}$) slide to the right along the discrete-time axis, but L remains the same? How may the correspondingly right-shifted Su-Wong-Ho LMMSE estimator’s weights be related to the original ‘pre-shift’ Su-Wong-Ho LMMSE estimator’s weights? The LMMSE estimator’s Q-taps $\{w_{q}^{(L,0)}\}$, that respectively weighting the observables $\{r_{q+L-Q+q}^{}, q = 1, \ldots, Q\}$ in $e^{j\theta}$, those taps would be applicable also in $e^{j\theta+\pi}$ to weight $\{r_{q+L-Q+q+1}, q = 1, \ldots, Q\}$ after the aforementioned ‘shifting’. This is because

(i) between θ_{q+L} and θ_{q+L+1} is a time lapse equal to that between θ_{q} and θ_{q+1}, and

(ii) the phase noise is modelled to have stationary independent increments.

The weights are thus independent of k, even though $\{\theta_{q}\}$ and $\{e^{j\theta}\}$ are non-stationary. This independence of k is because the estimator multiplies r_{k} with r_{m}. $\forall m$.

Conclusion: The Su-Wong-Ho phase-estimator of [3] was for a limited range of latency, and for a pre-specified number of taps equal to the observation-window size. That estimator is herein extended to accommodate a wider range of latency, to select the optimum estimator-taps window from a wider observation-window, and to handle newly arrived samples.

Acknowledgment: This work was supported by the Internal Competitive Research Grant number G-YG67 from the Hong Kong Polytechnic University.

© The Institution of Engineering and Technology 2011
1 March 2011
doi: 10.1049/el.2011.0541

Y.-T. Su (Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 80264, Taiwan)
E-mail: yts@nknucc.nknu.edu.tw
K.T. Wong (Department of Electronic & Information Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong)

Reference