Circuit Switching: Traffic Engineering

References

• Chapter 1, *Telecommunication System Engineering*, Roger L. Freeman, Wiley.
Introduction

Example:
- mesh connection (full mesh) for an eight-subscriber system
Introduction

– justify a mesh connection is when each and every subscriber wishes to communicate with every other subscriber in the network for virtually the entire day.

– Most subscriber do not use their telephones on a full-time basis
– the ordinary subscriber will normally talk to only one other subscriber at a time
 • will not need to talk to all other subscribers simultaneously
Introduction

- Star network with a switch at the center
 - switch reduce the number of links between subscribers
Introduction

Terminology

– Trunk

• the telephone lines connecting one telephone switch or exchange with another are called trunks.

• one of the most important steps in telecommunication engineering practice is to determine the number of trunks required between exchanges.

↑ Dimensioning
Terminology

– Calling rate \((C)\)
 • The number of calls which arrive over a time interval

– Holding time \((H)\)
 • The average duration of a call

– Telephone traffic may fluctuate throughout the day, and may have a “busy hour” which is the hour that has the most number of calls
 • busy hour depends on various factors such as stock market, weather and international events
Introduction

Example
Measurement of Traffic

- The traffic intensity, more often called the traffic, is defined as the average number of calls in progress. The unit of traffic is Erlang (E).

\[A = \frac{Ch}{T} \]

- \(A \): traffic intensity
- \(C \): number of calls arrivals during time \(T \)
- \(h \): average holding time
Measurement of Traffic

– Since a single trunk cannot carry more than one call, we can write

\[A \leq 1 \]

– The probability of finding the trunk busy is equal to the proportion of time for which the trunk is busy. Thus, this probability equals the occupancy \(A \) of the trunk.
Measurement of Traffic

Example: 1.5 erlang of traffic carried on three trunks

Trunk 1

Trunk 2

Trunk 3

1.5E

time

Busy

Free
Measurement of Traffic

Example:

- On average, during the busy hour, a company makes 120 outgoing calls of average duration 2 minutes. It receives 200 incoming calls of average duration 3 minutes.
 - Find the outgoing traffic, the incoming traffic and the total traffic

 Outgoing traffic = 120 x 2 / 60 = 4 E
 Incoming traffic = 200 x 3 / 60 = 10 E
 Total traffic = 4 + 10 = 14 E
Measurement of Traffic

Example:
– During the busy hour, on average, a customer with a single telephone line makes three calls and receives three calls. The average call duration is 2 minutes. What is the probability that a caller will find the line engaged?

Total traffic = Occupancy of line = \((3+3) \times \frac{2}{60} = 0.1\) E

Probability of finding the line engaged = 0.1

Blockage, Lost Calls, and Grade of Service

Lost call or blocked calls
- In a circuit-switched system, all attempts to make calls over a congested group of trunks are unsuccessful. The unsuccessful call is called lost call or blocked call.

Grade of service
- Probability of meeting blockage is called the grade of service \((B) \)
- Example: On average, one call in 100 will be blocked
 - \(B=0.1 \)
Lost call or blocked calls
– In a circuit-switched system, all attempts to make calls over a congested group of trunks are unsuccessful. The unsuccessful call is called lost call or blocked call.

Grade of service
– probability of meeting blockage is called the grade of service (B)

$$B = \frac{\text{Number of lost calls}}{\text{Total number of offered calls}}$$
Grade of service is also the
• proportion of the time for which congestion exists
• probability of congestion
• probability that a call will be lost due to congestion

If traffic A erlangs is offered by a group of trunks having a grad of service B, the traffic lost is AB and the traffic carried is $A(1-B)$ erlangs.
Example

– During the busy hour, 1200 calls were offered to a group of trunks and six calls were lost. The average call duration was 3 minutes

– The traffic offered = \(A = \frac{1200 \times 3}{60} = 60 \text{ E} \)
– The traffic carried = \(A-B = (1200-6) \times 3 / 60 = 59.7 \text{ E} \)
– The traffic lost = \(B = \frac{6 \times 3}{60} = 0.3 \text{ E} \)
– Grade of service = \(B/A = \frac{0.3}{60} = 0.005 \)
– The total duration of the periods of congestion
 \[= B \times T = 0.005 \times 3600 = 18 \text{ seconds} \]
Traffic Formulas

Models of traffic

– call arrivals at an exchange are random in nature.
– It fits a family of probability-distribution curves following a **Poisson distribution**

– Variance-to-mean ratio (VMR)

\[\alpha = \frac{\sigma^2}{\mu} \]
Traffic Formulas

Traffic probability distribution (Smooth, Rough and Random)

- Smooth: VMR < 1

![Histogram showing smooth traffic distribution with mean and variance values.]
Traffic Formulas

Traffic probability distribution
- Rough: VMR > 1
Rough traffic

- tends to be “peakier” than random and smooth traffic.

- For a given grade of service, more circuits are required for rough traffic because of the greater spread of distribution curve.
Traffic probability distribution

- Random: VMR = 1
- Poisson distribution function is an example of random traffic where VMR = 1
Traffic Formulas

- The number of call arrivals in a given time has a Poisson distribution

\[P(x) = \frac{\mu^x}{x!} e^{-\mu} \]

- \(x \) is the number of call arrivals in time \(T \)
- \(\mu \) is the mean number of call arrivals in \(T \)
– Consider call-holding times to have a negative exponential distribution

\[P(T \geq t) = e^{-t/h} \]

- \(P \) is the probability of a call lasting longer than \(t \)
- \(h \) is the mean call duration
Example

– On average one call arrives every 5 seconds. During a period of 10 seconds, what is the probability that
– a. No call arrives

\[P(0) = \frac{2^0}{0!} e^{-2} = 0.135 \]

– b. One call arrives

\[P(1) = \frac{2^1}{1!} e^{-2} = 0.27 \]

– c. More than one call arrives

\[P(x > 1) = 1 - P(0) - P(1) = 0.595 \]
Example

– In a telephone system, the average call duration is 2 minutes. A call has already lasted 4 minutes. What is the probability that
– a. the call will last at least another 4 minutes
 • the probability is independent of the time which has already elapsed.
 \[P = e^{-t/h} = e^{-4/2} = 0.135 \]
– b. The call will end within the next 4 minutes
 \[P(T \leq t) = 1 - P(T \geq t) = 1 - 0.135 = 0.865 \]
Lost-call systems

– Consider that a large number of local loops are served by a small number of trunks in an exchange

Traffic offered A erlangs

N outgoing trunks

– when a call demanding a trunk link arrives, it is assigned a free trunk line if one is available, but if all trunks are engaged, that call will be lost since no provision of buffering is made.
For a lost-call system having N trunks, when offered traffic A, the first Erlang distribution is given by

$$P(x) = \frac{A^x}{\sum_{k=0}^{N} \frac{A^k}{k!}}$$
The probability of a lost call, which is the grade of service B, is

$$B = \frac{A^N}{\sum_{k=0}^{N} \frac{A^k}{k!}}$$
Erlang’s lost-call formula

Example

– A group of 5 trunks is offered 2 E of traffic. Find
– a. The grade of service

\[B = \frac{A^N}{N!} = \frac{2^5}{5!} = \frac{0.2667}{7.2667} = 0.037 \]

– b. The probability that only one trunk is busy

\[P(1) = \frac{2^1}{1!} = \frac{2}{7.2667} = 0.275 \]
Erlang’s lost-call formula

– c. The probability that only one trunk is free

\[P(4) = \frac{2^4}{4!} = \frac{16}{24} \cdot \frac{7.2667}{7.2667} = 0.0917 \]

– d. The probability that at least one trunk is free

\[P(x < 5) = 1 - P(5) = 1 - B = 1 - 0.037 = 0.963 \]
Traffic Table

<table>
<thead>
<tr>
<th>Trunks</th>
<th>Grade of Service 1 in 1000</th>
<th>Grade of Service 1 in 500</th>
<th>Grade of Service 1 in 200</th>
<th>Grade of Service 1 in 100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UC</td>
<td>TU</td>
<td>UC</td>
<td>TU</td>
</tr>
<tr>
<td>1</td>
<td>0.04</td>
<td>0.001</td>
<td>0.07</td>
<td>0.002</td>
</tr>
<tr>
<td>2</td>
<td>1.8</td>
<td>0.05</td>
<td>2.5</td>
<td>0.07</td>
</tr>
<tr>
<td>3</td>
<td>6.8</td>
<td>0.19</td>
<td>9</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>0.44</td>
<td>19</td>
<td>0.53</td>
</tr>
<tr>
<td>5</td>
<td>27</td>
<td>0.76</td>
<td>32</td>
<td>0.90</td>
</tr>
<tr>
<td>6</td>
<td>41</td>
<td>1.15</td>
<td>48</td>
<td>1.33</td>
</tr>
<tr>
<td>7</td>
<td>57</td>
<td>1.58</td>
<td>65</td>
<td>1.80</td>
</tr>
<tr>
<td>8</td>
<td>74</td>
<td>2.05</td>
<td>83</td>
<td>2.31</td>
</tr>
<tr>
<td>9</td>
<td>92</td>
<td>2.56</td>
<td>103</td>
<td>2.85</td>
</tr>
<tr>
<td>10</td>
<td>111</td>
<td>3.09</td>
<td>123</td>
<td>3.43</td>
</tr>
<tr>
<td>11</td>
<td>131</td>
<td>3.65</td>
<td>145</td>
<td>4.02</td>
</tr>
<tr>
<td>12</td>
<td>152</td>
<td>4.23</td>
<td>167</td>
<td>4.64</td>
</tr>
<tr>
<td>13</td>
<td>174</td>
<td>4.83</td>
<td>190</td>
<td>5.27</td>
</tr>
<tr>
<td>14</td>
<td>196</td>
<td>5.45</td>
<td>213</td>
<td>5.92</td>
</tr>
<tr>
<td>15</td>
<td>219</td>
<td>6.08</td>
<td>237</td>
<td>6.58</td>
</tr>
<tr>
<td>16</td>
<td>242</td>
<td>6.72</td>
<td>261</td>
<td>7.26</td>
</tr>
<tr>
<td>17</td>
<td>266</td>
<td>7.38</td>
<td>286</td>
<td>7.95</td>
</tr>
<tr>
<td>18</td>
<td>290</td>
<td>8.05</td>
<td>311</td>
<td>8.64</td>
</tr>
<tr>
<td>19</td>
<td>314</td>
<td>8.72</td>
<td>337</td>
<td>9.35</td>
</tr>
<tr>
<td>20</td>
<td>339</td>
<td>9.41</td>
<td>363</td>
<td>10.07</td>
</tr>
<tr>
<td>21</td>
<td>364</td>
<td>10.11</td>
<td>388</td>
<td>10.79</td>
</tr>
<tr>
<td>22</td>
<td>389</td>
<td>10.81</td>
<td>415</td>
<td>11.53</td>
</tr>
<tr>
<td>23</td>
<td>415</td>
<td>11.52</td>
<td>442</td>
<td>12.27</td>
</tr>
<tr>
<td>24</td>
<td>441</td>
<td>12.24</td>
<td>468</td>
<td>13.01</td>
</tr>
</tbody>
</table>

TU: traffic unit
Example

– ON average, during the busy hour, a company makes 120 outgoing calls of average duration 2 minutes. It receives 200 incoming calls of average duration 3 minutes. This company wishes to obtain the grade of service of 0.01 for both incoming and outgoing calls. How many exchanges lines should it rent if

– a. Incoming and outgoing calls are handled on separate groups of lines
– b. A common group of lines is used for both incoming and outgoing calls.
Traffic Table

– a. The outgoing traffic is $120 \times 2 / 60 = 4 \text{ E}$
The incoming traffic is $200 \times 3 / 60 = 10 \text{ E}$

From the table,
4 E of outgoing traffic needs 10 lines
10 E of incoming traffic needs 18 lines

– b. The total traffic is 14 E

From the table,
14 E of traffic needs 23 lines