Department of Electronic and Information Engineering

Bachelor of Science (Honours) Degree Programme in

Internet and Multimedia Technologies

Full-time Credit-based

Code: 42077

Programme Booklet

2008/2009
1. GENERAL INFORMATION

1.1 Cohort of Intakes

This programme booklet is the definitive programme document for the 2008/09 cohort of intakes, and particularly for those students who enter this programme by following the HKALE system. For those non-local students from Chinese Mainland or countries which have an education system different from the current Hong Kong system, they are required to study a one-year Foundation Curriculum on top of the normal requirements for a 3-year undergraduate degree programme as specified in this programme booklet. These non-local students are required to complete a total of 131 credits, within 4 years nominal, to attain the degree award. In addition to this programme booklet, these students should refer to the Foundation-Year Curriculum, which is specially designed and approved by the University Senate. Just in case any updated information is necessary after the publication of this booklet, students are requested to refer to the URL http://www.eie.polyu.edu.hk/prog/bsc.html for the most updated information. Should any discrepancies between the contents of the booklet and University regulations arise, University regulations always prevail.

1.2 Programme Information

<table>
<thead>
<tr>
<th>Title of Programme</th>
<th>Bachelor of Science (Honours) Degree in Internet and Multimedia Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Department</td>
<td>Department of Electronic and Information Engineering (EIE)</td>
</tr>
<tr>
<td>Programme Structure</td>
<td>Credit-based</td>
</tr>
<tr>
<td>Final Award</td>
<td>BSc(Hons) in Internet and Multimedia Technologies</td>
</tr>
<tr>
<td></td>
<td>互聯網及多媒體科技（榮譽）理學士</td>
</tr>
</tbody>
</table>
Modes of attendance and total credits for graduation

For students who enter this programme by following a local Advanced-level education system:

<table>
<thead>
<tr>
<th>Mode of Attendance</th>
<th>Duration</th>
<th>Total Credits for Graduation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-time/Sandwich/Cooperative Education Scheme</td>
<td>Full-time mode: 3 years nominal, 6 years maximum</td>
<td>99 (plus 5 practical training credits and a minimum of 1 Work-Integrated Education training credit)</td>
</tr>
<tr>
<td></td>
<td>Sandwich mode: 4 years nominal, 7 years maximum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooperative Education Scheme (CES) mode:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3½ years nominal, 7 years maximum</td>
<td></td>
</tr>
</tbody>
</table>

For students who are required to study the Foundation-Year Curriculum:

<table>
<thead>
<tr>
<th>Mode of Attendance</th>
<th>Duration</th>
<th>Total Credits for Graduation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-time/Sandwich/Cooperative Education Scheme</td>
<td>Full-time mode: 4 years nominal, 8 years maximum</td>
<td>131 (plus 5 practical training credits and a minimum of 1 Work-Integrated Education training credit)</td>
</tr>
<tr>
<td></td>
<td>Sandwich mode: 5 years nominal, 9 years maximum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooperative Education Scheme (CES) mode:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4½ years nominal, 9 years maximum</td>
<td></td>
</tr>
</tbody>
</table>

2. **AIMS AND OUTCOMES OF THE PROGRAMME**

2.1 Programme Aims

Internet and multimedia technologies are among the key technologies that support the economic growth worldwide. Products with multimedia features such as digital cameras, personal digital assistants, 2G/2.5G mobile phones with built-in cameras, 3G mobile phones, are in great demand and new models are being developed almost everyday. Moreover, with the increasing popularity of wired broadband communications and wireless 2.5G/3G mobile communications, more and more multimedia contents are being created, delivered and shared among users via the Internet. In the years to come, there will be a rapid convergence of computer, communications and consumer electronics. There will also be a need of professionals who possess knowledge in all three areas of computer networks, multimedia signal...
processing and electronics. The Programme primarily aims to produce graduates that will fulfill such a need by providing sufficient technical training to students for a career in the field of Internet and multimedia technologies. Moreover, the Programme aims to develop all-round students to adapt to the rapidly changing environment. All students will also acquire some form of work-integrated education before graduation.

Specifically, the Programme is designed to equip students with

- the necessary practical skills in the application of Internet and multimedia technologies through hands-on experience and industrial placements;
- an in-depth and up-to-date knowledge of Internet and multimedia technologies;
- the skills to evolve into self-learners who have the necessary foundation to continue to update their expertise;
- fundamental theory and practical skills adaptable to a workplace environment;
- analytical thinking, problem solving, interpersonal and communication skills;
- the ability to develop as creative learners who can work with abstract ideas and implement them in a practical environment; and
- the necessary knowledge and skills to enable them to function in a variety of professional roles.

Upon graduation, students should have acquired sufficient knowledge to commence their careers in the following areas:

- Digital entertainment industry – designing computer games, creating digital effects for movies, planning, installing, configuring and maintaining digital broadcasting equipment.
- Internet-related business – developing applications with multimedia features on networks, particularly on the Internet.
- Data network centres – planning, installing, configuring and maintaining general computer networks.
- Mobile communications and computing – developing applications particularly for the current and future mobile systems that involve much multimedia contents, such as mobile games, mobile video streaming systems, and mobile information systems.
- Electronic industry – developing embedded electronic products with multimedia features, such as electronic toys, electronic educational units, and personal entertainment units.
2.2 Programme outcomes

Programme Outcomes are the attributes of the graduates who have completed the Programme successfully. These qualities are classified into two broad categories. Category A embraces such attributes as knowledge, skills, abilities, attitudes that are related to Internet and multimedia technologies. Category B embraces all-roundedness attributes possessed by the graduates to support their further development as a person.

Category A: Professional/academic knowledge and skills

On successful completion of the Programme, students should be able to:

(i) identify the different aspects of Internet and multimedia systems;
(ii) design and implement digital systems related to Internet and multimedia technologies;
(iii) design and develop digital electronic products related to Internet and multimedia technologies;
(iv) identify, analyze and solve technical problems related to Internet and multimedia technologies;
(v) apply computer programming techniques to solve practical engineering problems;
(vi) apply mathematical techniques to model and solve problems;
(vii) appreciate and identify factors/issues related to product/industrial design; and
generate and evaluate design solutions to solve a specific problem; and
(viii) appreciate computer games’ designs and complexities; and design, analyze, implement and evaluate computer games.

Category B: Attributes for All-Roundedness

On successful completion of the Programme, students should be able to:

(i) communicate effectively, and present ideas and findings clearly in oral and written forms;
(ii) think critically and creatively;
(iii) demonstrate self-learning and life-long learning capability;
(iv) collaborate effectively with other members in a team, and demonstrate leadership capability;
(v) understand the essence of entrepreneurship;
(vi) realize and appreciate cultural diversity and globalization; and
(vii) recognize social responsibility and ethics.
3. ENTRANCE REQUIREMENTS

For non-local students who enter this programme by following a different education system than that in Hong Kong, they must possess the non-local qualifications for meeting the general entrance requirements for Bachelor Degree Programmes as published by the University.

For students who enter this programme by following a local Advanced-level education system, they must satisfy both the University general minimum entrance requirements AND the programme-specific requirements, as set out below.

3.1 University General Minimum Entrance Requirements

For those applying on the basis of HKALE:

- E in HKALE Chinese Literature, or E in HKALE(AS-Level) Chinese Language & Culture, or (for applicants who have not taken Chinese since Secondary Five) D in a HKCEE language other than Chinese and English; AND
- E in HKALE(AS-Level) Use of English; AND
- E in two other HKALE subjects, or E in one other HKALE subject and two other HKALE(AS-Level) subjects; AND
- E in five HKCEE subjects (For attempts of English Language and Chinese Language in 2007 and after, at least Level 2 is required).

For those applying on the basis of other local qualifications:

- An appropriate Higher Certificate (as specified in section 3.2 below) from The Hong Kong Polytechnic University or the Hong Kong Institute of Vocational Education (IVE) – formerly the Hong Kong Technical Institute (TI) and the Hong Kong Technical College (TC); OR
- An appropriate Diploma (as specified in section 3.2 below) from The Hong Kong Polytechnic University or the Hong Kong Institute of Vocational Education (IVE) – formerly the Hong Kong Technical Institute (TI) and the Hong Kong Technical College (TC), either with a Credit or Pass at Merit Level in at least three Level III subjects; OR
- An appropriate Associate Degree/Higher Diploma* from a recognised institution (suitable candidates will be considered for advanced standing entry to the senior year curriculum).

* These applicants should follow the regular application arrangements to submit their applications. The Department will consider the applicants for admission to the senior year and inform them at the time of offer.
3.2 Programme-specific Minimum Entrance Requirements

In addition to the above general requirements, applicants must also satisfy the following programme-specific requirements:

- C or above in HKCEE Mathematics or Additional Mathematics, AND
- D or above in HKCEE Physics or Engineering Science

Alternative Entry Route:

- A Higher Diploma in related disciplines; OR
- A Higher Certificate in related disciplines; OR
- A Diploma (with Credit) in related disciplines; OR
- An Associate Degree in related disciplines.

Alternative Entry Route with Credit Transfer:

- Holders of Associate Degree/Higher Diploma in related disciplines may be given credit transfer.

3.3 Admission of Advanced Standing Students Based on Advanced Academic Qualifications

(i) With approval by the Faculty, students may be admitted to the Programme beyond the initial stage provided they have demonstrably reached the general level of educational development which would have been reached had they taken the earlier stage(s) of the Programme, and provided that there is a high probability that they will complete the Programme successfully. These students will still be labelled as first year students even though they are following a second year curriculum.

(ii) Students admitted to the Programme via the above-stated admission route will be advised that based on advanced academic qualifications, they are required to take fewer subjects (normally 33 credits) than students admitted through normal entry route.

(iii) Information on the number of credits required for completion for both normal entry and for the individual students based on their admission qualifications will be reflected on transcripts of study.
(iv) If students who are admitted to the programme via the above-mentioned admission routes wish to gain higher grades by studying the subject(s) again, they may approach the Department for declining the provision of taking fewer credits (which is granted at the time of admission).

(v) Students who, upon admission, wish to apply to transfer any credits from their previous studies and take fewer credits than that confirmed at the time of admission, will have to follow the arrangements for "application for credit transfer" and to pay the related fees. The credits to be transferred are subject to the rule on validity period for subject credits.

4. PROGRAMME, SUBJECTS, AND CREDITS

4.1 Programme Specified Subjects

For those non-local students from Chinese Mainland or countries which have an education system different from the current Hong Kong system, they have to study the Foundation Year prior to studying the Year 1, Year 2 and Year 3 curricula. For the details of Foundation Year subjects and credits requirements, they shall refer to the 2007/08 Foundation-Year Curriculum (a separate booklet).

For students who enter the programme via the local HKALE system or similar, they will study the subjects in Year 1, Year 2 and Year 3 as described in the following.

This Programme is a credit-based, 3-year full-time course. The number of credits required for graduation is 99, plus 5 practical training credits and 1 WIE training credit. At the end of Year 2, students may take the Industrial Training lasting normally for one year before they commence their final year of studies; or they may opt for the Cooperative Education Scheme (CES) in which they will engage in industrial training while concurrently pursuing study in the University until graduation.

All subjects in the first two years of studies in the Programme are compulsory and they aim to provide a solid foundation to students. During the first year of studies, moreover, students are required to complete a 5-week practical training at Industrial Centre. The practical training consists of two parts: Computer Training and Electronic Practice. The two weeks’ computer training will be completed by the end of the second semester while the three weeks’ electronic practice will be conducted during the summer.
During the final year of studies, students will be allowed to select 5 electives from a pool of subjects according to their own interest. Also, they must complete an Honours Project. In addition, students will take compulsory subjects on marketing and management, and one Broadening General Education non-technical elective subject (another General Education subject “China Studies”, which is compulsory, is to be taken in Year 1). The objectives of taking such “non-technical” subjects are to broaden the knowledge base of students and to enhance the all-roundedness of students. Before graduation, students must obtain a minimum of 1 training credit on Work-Integrated Education (WIE), which can be in the form of CES, industrial training, industrial project, Preferred Graduate Development Programme (PGDP), or jobs as deemed appropriate.

Table 4.1 Compulsory and elective subjects to be taken by regular IMT and major in IMT students

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Title</th>
<th>CR</th>
<th>Regular IMT</th>
<th>Major In IMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMA227</td>
<td>Mathematics I</td>
<td>3</td>
<td>COM</td>
<td>COM</td>
</tr>
<tr>
<td>AMA228</td>
<td>Mathematics II</td>
<td>3</td>
<td>COM</td>
<td>COM</td>
</tr>
<tr>
<td>CBS2065</td>
<td>Chinese for Electronic and Information Engineering</td>
<td>2</td>
<td>CBS</td>
<td>CBS</td>
</tr>
<tr>
<td>COMP407</td>
<td>Computer Graphics</td>
<td>3</td>
<td>COM</td>
<td>ELE</td>
</tr>
<tr>
<td>COMP436</td>
<td>Middleware and Distributed Objects</td>
<td>3</td>
<td>ELE</td>
<td>ELE</td>
</tr>
<tr>
<td>COMP437</td>
<td>Mobile Computing</td>
<td>3</td>
<td>ELE</td>
<td>ELE</td>
</tr>
<tr>
<td>EIE210</td>
<td>Electronics Design</td>
<td>3</td>
<td>COM</td>
<td>COM</td>
</tr>
<tr>
<td>EIE214</td>
<td>Introduction to Logic Design</td>
<td>3</td>
<td>COM</td>
<td>COM</td>
</tr>
<tr>
<td>EIE225</td>
<td>Introduction to Electronics and Multimedia Technologies</td>
<td>3</td>
<td>COM</td>
<td>ELE</td>
</tr>
<tr>
<td>EIE311</td>
<td>Computer System Fundamentals</td>
<td>3</td>
<td>COM</td>
<td>ELE</td>
</tr>
<tr>
<td>EIE320</td>
<td>Object-Oriented Design and Programming</td>
<td>3</td>
<td>COM</td>
<td>ELE</td>
</tr>
<tr>
<td>EIE325</td>
<td>Telecommunication Technologies</td>
<td>3</td>
<td>COM</td>
<td>COM</td>
</tr>
<tr>
<td>EIE328</td>
<td>Digital Signal Processing for Multimedia Applications</td>
<td>3</td>
<td>COM</td>
<td>ELE</td>
</tr>
<tr>
<td>EIE341</td>
<td>Signals and Systems</td>
<td>3</td>
<td>COM</td>
<td>COM</td>
</tr>
<tr>
<td>EIE342</td>
<td>Computer Networks</td>
<td>3</td>
<td>COM</td>
<td>COM</td>
</tr>
<tr>
<td>EIE344</td>
<td>Fundamentals of Embedded Systems</td>
<td>3</td>
<td>COM</td>
<td>ELE</td>
</tr>
<tr>
<td>EIE360</td>
<td>Integrated Project</td>
<td>3</td>
<td>COM</td>
<td>ELE</td>
</tr>
<tr>
<td>EIE387</td>
<td>Cooperative Education (for CES mode only)</td>
<td>0</td>
<td>WIE</td>
<td>N/A</td>
</tr>
<tr>
<td>EIE388</td>
<td>Industrial Training (for Sandwich mode only)</td>
<td>0</td>
<td>WIE</td>
<td>WIE</td>
</tr>
<tr>
<td>EIE408</td>
<td>Principles of Virtual Reality</td>
<td>3</td>
<td>ELE</td>
<td>ELE</td>
</tr>
<tr>
<td>EIE414</td>
<td>Computer Architecture and Systems</td>
<td>3</td>
<td>ELE</td>
<td>ELE</td>
</tr>
<tr>
<td>EIE424</td>
<td>Distributed Systems and Networking Programming</td>
<td>3</td>
<td>ELE</td>
<td>ELE</td>
</tr>
<tr>
<td>EIE426</td>
<td>Artificial Intelligence and Computer Vision</td>
<td>3</td>
<td>ELE</td>
<td>ELE</td>
</tr>
<tr>
<td>EIE428</td>
<td>Multimedia Communications</td>
<td>3</td>
<td>ELE</td>
<td>ELE</td>
</tr>
<tr>
<td>EIE429</td>
<td>Corporate Networking</td>
<td>3</td>
<td>ELE</td>
<td>ELE</td>
</tr>
<tr>
<td>EIE430</td>
<td>Honours Project</td>
<td>6</td>
<td>COM</td>
<td>ELE</td>
</tr>
<tr>
<td>EIE431</td>
<td>Digital Video Production and Broadcasting</td>
<td>3</td>
<td>ELE</td>
<td>ELE</td>
</tr>
<tr>
<td>EIE432</td>
<td>Web Systems and Technologies</td>
<td>3</td>
<td>ELE</td>
<td>ELE</td>
</tr>
<tr>
<td>Subject Code</td>
<td>Subject Title</td>
<td>CR</td>
<td>Regular IMT</td>
<td>Major In IMT</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>----</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>EIE435</td>
<td>Image and Audio Processing</td>
<td>3</td>
<td>ELE</td>
<td>ELE</td>
</tr>
<tr>
<td>ELC2501</td>
<td>University English I</td>
<td>2</td>
<td>ELC</td>
<td>ELC</td>
</tr>
<tr>
<td>ELC2502</td>
<td>University English II</td>
<td>2</td>
<td>ELC</td>
<td>ELC</td>
</tr>
<tr>
<td>ELC3508</td>
<td>English for Effective Workplace Communication</td>
<td>2</td>
<td>ELC</td>
<td>ELC</td>
</tr>
<tr>
<td>ENG224</td>
<td>Information Technology</td>
<td>3</td>
<td>COM</td>
<td>COM</td>
</tr>
<tr>
<td>ENG236</td>
<td>Computer Programming</td>
<td>3</td>
<td>COM</td>
<td>COM</td>
</tr>
<tr>
<td>GE</td>
<td>General Education Subject – China Studies*</td>
<td>2</td>
<td>GE</td>
<td>GE</td>
</tr>
<tr>
<td>GE</td>
<td>General Education Subject – Broadening*</td>
<td>2</td>
<td>GE</td>
<td>GE</td>
</tr>
<tr>
<td>IC291</td>
<td>Practical Training</td>
<td>5</td>
<td>TRN</td>
<td>TRN</td>
</tr>
<tr>
<td>MM2021</td>
<td>Management and Organisation</td>
<td>3</td>
<td>COM</td>
<td>COM</td>
</tr>
<tr>
<td>MM2711</td>
<td>Introduction to Marketing</td>
<td>3</td>
<td>COM</td>
<td>COM</td>
</tr>
<tr>
<td>SD2492</td>
<td>Product Design and Social Considerations</td>
<td>3</td>
<td>COM</td>
<td>COM</td>
</tr>
<tr>
<td>SD348</td>
<td>Introduction to Industrial Design</td>
<td>3</td>
<td>COM</td>
<td>ELE</td>
</tr>
<tr>
<td>SD3983</td>
<td>Computer Game Development II</td>
<td>3</td>
<td>COM</td>
<td>ELE</td>
</tr>
<tr>
<td>SD3984</td>
<td>Computer Game Development I</td>
<td>3</td>
<td>COM</td>
<td>COM</td>
</tr>
</tbody>
</table>

* For details about GE subject syllabi, please refer to the brochures “China Studies Brochure” and “Broadening Subjects Brochure” published by the University.

4.2 University Language Requirements

4.2.1 Students are expected to possess the general standard of language proficiency through the secondary school education prior to their admission to the University as follows:

(i) English and Written Chinese

Students with overall grade “A” or “B” in HKALE(AS-level) Use of English and Chinese Language & Culture shall be considered as possessing the respective general standards of language proficiency, and thus shall be exempted from taking the respective Language Enhancement Programmes (LEP).

Students with overall grade “C” in HKALE(AS-level) Use of English and Chinese Language & Culture shall generally be considered as possessing the respective general standards of language proficiency. But if they possess component grade(s) lower than “C”, they shall be required to complete the respective LEP modules prescribed for them.
(ii) Putonghua

Students shall be assessed through the entrance test on Putonghua provided by CBS upon commencement of their programme of study at the University to determine if they shall be required to take the Putonghua LEP.

Students with grade “A” or “B” in HKCEE Putonghua shall be considered as possessing the general standard of Putonghua proficiency, and thus shall be exempted from taking the required Putonghua LEP.

Students with grade “C” in HKCEE Putonghua shall generally be considered as possessing the general standard of Putonghua proficiency. But they will be assessed again through the entrance test on Putonghua provided by CBS upon commencement of their programme of study to determine if they shall be required to take the Putonghua LEP.

4.2.2 Benchmarking mechanisms will be established for assessing students’ general standard of language proficiency upon admission, in order that appropriate enhancement can be provided, where necessary, to help them achieve the desired standard upon graduation.

(i) English and Written Chinese

HKALE(AS-level) Use of English and Chinese Language & Culture subjects shall be adopted as the benchmarking mechanisms.

Native speakers of English shall by default be given exemption. Exemption requests on other grounds shall be considered on a case-by-case basis.

(ii) Putonghua

CBS’s entrance test on Putonghua and HKCEE Putonghua subject shall be adopted as the benchmarking mechanisms for assessing students’ general levels of Putonghua proficiency upon admission.

Native speakers of Putonghua shall by default be given exemption. Exemption requests on other grounds shall be considered on a case-by-case basis.

4.2.3 To enable students to be equipped with the necessary generic language skills to pursue their studies as well as to attain the level of proficiency up to
University’s desired standard, appropriate non-credit bearing enhancement programmes will be provided to students in accordance with their proficiency level as identified in the entry assessment as specified in Section 4.2.1 above.

(i) Non-credit Bearing Language Enhancement Programmes

Non-credit bearing Chinese/English Language Enhancement Programmes (LEPs) shall be prescribed and provided by CBS/ELC for individual students in respect of their proficiency levels.

Students are expected to complete the LEPs prescribed by CBS and/or ELC before their graduation. Nevertheless, non-completion of the respective LEP(s) will not affect students’ eligibility for graduation.

4.2.4 Undergraduate students will be required to undergo both Chinese and English language proficiency assessment before their graduation. In addition, final year students are strongly recommended to take external tests such as IELTS which can help to strengthen their credentials when seeking employment.

(i) Chinese and English Language Proficiency Assessments

The PolyU-developed Graduating Students’ Language Proficiency Assessment (GSLPA) in Chinese and English shall be adopted as the required language proficiency exit tests.

Students on all UGC-funded Bachelor’s degree programmes shall be required to sit for both GSLPAs before graduation. Except for those who are given exemption from attempting the GSLPA, students who have not taken both of the GSLPAs shall not be eligible for graduation.

Students who have been waived of the Chinese language requirement during their admission to the University shall be given exemption from sitting for the Chinese GSLPA (both written Chinese and Putonghua). Nevertheless, they will not be precluded from sitting for the Chinese GSLPA, but this will entirely be on a voluntary basis.

A statement indicating that a student has completed the GSLPAs shall be included in his/her academic transcript. As regards the student’s scores obtained from the GSLPAs, they shall be reported in separate test result transcripts.
4.3 Specified Progression Pattern

For non-local students from Chinese Mainland or countries which have an education system different from the current Hong Kong system, they will have to study the Foundation Year prior to pursuing study in Year 1, Year 2 and Year 3. The progression pattern of the Foundation Year is reproduced in the following from the 2007/08 Foundation-Year Curriculum for completeness of this document. For details, please refer to the original booklet.

Foundation Year — Semester 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMA103</td>
<td>Foundation Mathematics I for Science and Engineering</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>AP101</td>
<td>College Physics I</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>APSS184</td>
<td>Understanding the Hong Kong Community</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>CBS2050</td>
<td>Elementary Cantonese</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>ELC1004</td>
<td>English for University Studies I</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>ENG1001</td>
<td>Foundation Year Seminar I</td>
<td>1</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Foundation Year — Semester 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMA104</td>
<td>Foundation Mathematics II for Science and Engineering</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>AMA105</td>
<td>Logic : Qualitative and Quantitative</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>ELC1005</td>
<td>English for University Studies II</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>ENG1002</td>
<td>Foundation Year Seminar II</td>
<td>1</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Level 1</td>
<td>Foundation Year Elective</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Level 1</td>
<td>Foundation Year Elective</td>
<td>3</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Foundation Year Electives

- ABCT102 Foundation Biology
- ABCT103 Fundamental Chemistry*
- AP102 College Physics II
- APSS185 Discovering Psychology*
- COMP100 Introduction to Information Technology*
- COMP102 Enterprise Information Technology
- COMP111 Information Technology Systems
- ELC1003 Extended Writing Skills

* Elective subjects for students who come from Guangdong Province and have been exempted from taking ‘CBS2050 Elementary Cantonese’ by the Programme Leader.
For students who enter the programme by following a local Advanced-level education system, and those who have already finished the Foundation Year, they will pursue their study in Year 1, Year 2 and Year 3 according to the progression pattern specific to each mode of study, as described in the following.

Year 1 — Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMA227</td>
<td>Mathematics I</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>EIE225</td>
<td>Introduction to Electronics and Multimedia Technologies</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>ELC2501</td>
<td>University English I</td>
<td>2</td>
<td>Compulsory</td>
</tr>
<tr>
<td>ENG224</td>
<td>Information Technology</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>ENG236</td>
<td>Computer Programming</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>GE</td>
<td>GE – China Studies</td>
<td>2</td>
<td>Compulsory</td>
</tr>
<tr>
<td>IC291</td>
<td>Practical Training</td>
<td>5</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Year 1 — Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMA228</td>
<td>Mathematics II</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>EIE210</td>
<td>Electronics Design</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>EIE214</td>
<td>Introduction to Logic Design</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>EIE341</td>
<td>Signals and Systems</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>ELC2502</td>
<td>University English II</td>
<td>2</td>
<td>Compulsory</td>
</tr>
<tr>
<td>ENG236</td>
<td>Computer Programming (cont’d)</td>
<td>---</td>
<td>Compulsory</td>
</tr>
<tr>
<td>SD2492</td>
<td>Product Design and Social Considerations</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>IC291</td>
<td>Practical Training (cont’d)</td>
<td>---</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Year 1 — Semester 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC291</td>
<td>Practical Training (cont’d)</td>
<td>---</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Department of Electronic and Information Engineering, The Hong Kong Polytechnic University
Year 2 — Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP407</td>
<td>Computer Graphics</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>EIE311</td>
<td>Computer System Fundamentals</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>EIE320</td>
<td>Object-Oriented Design and Programming</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>EIE325</td>
<td>Telecommunication Technologies</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>ELC3508</td>
<td>English for Effective Workplace Communication</td>
<td>2</td>
<td>Compulsory</td>
</tr>
<tr>
<td>SD348</td>
<td>Introduction to Industrial Design</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>SD3984</td>
<td>Computer Game Development I</td>
<td>3</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Year 2 — Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIE328</td>
<td>Digital Signal Processing for Multimedia Applications</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>EIE342</td>
<td>Computer Networks</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>EIE344</td>
<td>Fundamentals of Embedded Systems</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>EIE360</td>
<td>Integrated Project</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>SD3983</td>
<td>Computer Game Development II</td>
<td>3</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Year 3 — Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBS2065</td>
<td>Chinese for Electronic and Information Engineering</td>
<td>2</td>
<td>Compulsory</td>
</tr>
<tr>
<td>EIE430</td>
<td>Honours Project</td>
<td>6</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Level 4</td>
<td>Technical Elective</td>
<td>3</td>
<td>Elective</td>
</tr>
<tr>
<td>Level 4</td>
<td>Technical Elective</td>
<td>3</td>
<td>Elective</td>
</tr>
<tr>
<td>Level 4</td>
<td>Technical Elective</td>
<td>3</td>
<td>Elective</td>
</tr>
<tr>
<td>MM2711</td>
<td>Introduction to Marketing</td>
<td>3</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Year 3 — Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIE430</td>
<td>Honours Project (cont'd)</td>
<td>---</td>
<td>Compulsory</td>
</tr>
<tr>
<td>MM2021</td>
<td>Management and Organisation</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Level 4</td>
<td>Technical Elective</td>
<td>3</td>
<td>Elective</td>
</tr>
<tr>
<td>Level 4</td>
<td>Technical Elective</td>
<td>3</td>
<td>Elective</td>
</tr>
<tr>
<td>GE</td>
<td>GE – Broadening</td>
<td>2</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Final Year Technical Electives

- COMP436 Middleware and Distributed Objects
- COMP437 Mobile Computing
- EIE408 Principles of Virtual Reality
- EIE414 Computer Architecture and Systems
- EIE424 Distributed Systems and Network Programming
- EIE426 Artificial Intelligence and Computer Vision
- EIE428 Multimedia Communications
- EIE429 Corporate Networking
- EIE431 Digital Video Production and Broadcasting
EIE432 Web Systems and Technologies
EIE435 Image and Audio Processing

Level 5 subjects
EIE507 Network Design - Theory & Practice
EIE522 Pattern Recognition: Theory & Applications
EIE529 Digital Image Processing
EIE536 High Speed Networks
EIE541 Digital Signal Processing
EIE546 Video Technology
EIE552 Internet Technologies for Multimedia Applications
EIE553 Security in Data Communication
EIE555 Personal Networking Technology
EIE556 Advanced DSP for Multimedia Communications
EIE557 Computational Intelligence and its Applications
EIE558 Speech Processing and Recognition
EIE563 Digital Audio Processing
EIE565 Advanced Multimedia Technology
EIE576 Information Technology in Biomedicine
EIE579 Advanced Telecommunication Systems

Subject to the approval by the Programme Leader, students may take at most one Level 5 subject per semester to replace a final-year technical elective during their final year of study.

General Education Subjects
Students are required to complete two 2-credit General Education subjects (one under the “China Studies” category and one under the “Broadening” category).

5. MODE OF STUDY AND FRAMEWORK

5.1 Mode of Study

The following information about the various modes of study apply to students who enter the programme either after having finished the Foundation Year, or through the local HKALE system or similar. The different years of the various modes of study are referred to as Foundation Year, Year 1, Year 2, Year 3 and Year 4.

All students will pursue identical study in Year 1 and Year 2. After Year 2, they may choose a particular mode of study according to their interest, planning, and places
available. A mode of study is characterized by the credits and subjects required and the progression pattern in Year 1 to Year 4.

There are three modes of attendance, namely Full-time mode, Sandwich mode, and Cooperative Education Scheme (CES) mode.

(i) Full-time mode

Under the Full-time mode, students will normally pursue three years of study in full time and then graduate at the end of the third year after having satisfied all programme requirements.
(ii) Sandwich mode

Under the Sandwich mode, students will pursue the first and second years of study in full time, and then engage in industrial training lasting normally for one year. During the industrial training period, students may choose to study one subject each semester. After the industrial training year, students will pursue the fourth year of study in full time again. Normally students will graduate at the end of the fourth year after having satisfied all programme requirements.
(iii) Cooperative Education Scheme (CES) mode

Under the CES mode, students will pursue the first and second years of study in full time. From Semester 3 of Year 2 up to graduation, students will engage in industrial training while concurrently pursuing study of nine subjects in the University with day-release (one day leave per week) given by the employer. Students will be assigned with an industrial advisor from the enterprise where the student is being deployed, and an academic advisor from the EIE Department for guidance. In early Year 3 Semester 2, students will work together with the advisors to come up with a proposal for a job-related Honours Project, which will commence in Year 3 Semester 2 and complete in Year 4 Semester 1. In this case, students will graduate at the end of the first semester of the fourth academic year after having satisfied all programme requirements. This progression pattern is shown as Track 1 on the next page. In case of students not taking up a job-related Honours Project, students may choose to take up a normal Honours Project and the study will be extended to the end of Year 4 Semester 2. This progression pattern is shown as Track 2 on the next page.
Year 3 & Year 4, Level 4
Cooperative Education, and a Job-related Honours Project commences in Year 3 Semester 2 and completes in Year 4 Semester 1

Year 3 & Year 4, Level 4
Cooperative Education, and an Honours Project commences in Year 4

Track 1

Entry into Programme

Local AL or similar

Foundation year

Year 2, Level 3

Summer between Year 1 and Year 2
3 weeks of Practical Training in Industrial Centre

Year 1, Level 2
2 weeks of Practical Training in Industrial Centre

Entry into Programme

Mainland or similar

Graduation
5.2 Framework for Industrial Training and Cooperative Education Scheme

Students who follow either the Sandwich mode or the CES mode of study will undergo Industrial Training or Cooperative Education after the second year of study. This Section sets out the framework for these trainings.

(i) Training Contents of Industrial Training and Cooperative Education

The training will follow a structured scheme prepared jointly with the sponsoring firm and will be tailored for the student with reference to the firm to which the student will be attached.

(ii) Administration of the Industrial Training and Cooperative Education

Training will take place under the joint supervision of an Industrial Supervisor who will be appointed by the firm to which the trainee is attached, and a University Training Tutor appointed by the Department. The latter will liaise with the Industrial Supervisor to monitor the progress of the student. The Tutor will make frequent contact with the student and will visit the student on-site at regular intervals.

(iii) Log-Book and Report

The trainee is required to keep a log-book on which a brief daily entry is made. The student will submit a monthly report to the Industrial Supervisor and the University Training Tutor. At the end of the training period, the student will submit a final written report. The student will be given an oral examination on the report, and will be required to make an oral presentation to an audience of students and staff, highlighting experience gained.

(iv) Assessment of Industrial Training and Cooperative Education

For the Sandwich mode, the assessment will be completed in the first two weeks of the fourth year. For the CES Track 1 mode of study, the assessment will be completed within the examination week at the end of Semester 1 in the fourth year. For the CES Track 2 mode of study, the assessment will be completed within the examination week at the end of Semester 2 in the fourth year.
In the assessment of industrial training, the key consideration is the extent to which the objective of the training scheme has been met. The assessment components, their relative weightings and the corresponding assessors are set out as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Assessor</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-book, monthly report and assignment</td>
<td>Industrial Supervisor</td>
<td>40%</td>
</tr>
<tr>
<td>Oral examination, presentation, and final report</td>
<td>University Training Tutor</td>
<td>60%</td>
</tr>
</tbody>
</table>

For the Sandwich mode and the CES mode of study, a pass in Industrial Training or Cooperative Education Scheme respectively is mandatory before the student is eligible for the award of a degree.

6. **HONOURS PROJECT**

The Honours Project is considered to be of great importance. This is reflected in the weighting given to it, being equivalent to two standard-sized subjects. The feature is “learning by doing”. The project is intended to be a challenge to the students’ intellectual and innovative abilities and to give them the opportunities to integrate and apply the knowledge and analytical skills gained in previous stages of study. It should also provide students with some appreciation of the entire process of problem solving. The progress from concept to final implementation and testing, through problem identification and the selection of alternative solutions will be emphasized.

6.1 **Project Management**

To facilitate the assessment of the student's work and to promote the ability to work independently, each student will be assigned one project under the supervision of an academic staff member, although several students may work on different aspects of a larger project.

The assignment of projects is expected to be completed by the month of June preceding the beginning of the final year of studies. Guidelines on the operation of the project are given in Section 6.3.
6.2 Project Assessment

At the completion of the project, students will be required to give an oral presentation/demonstration of the project to an audience of fellow students, staff and industrialists. Two hardcopies and one softcopy of the final report, and the daily log-book are to be submitted at the end of the second semester. The reports will go to an assessment panel consisting of the project supervisor and one other staff member of the Department.

Assessment of the project will be split into 3 areas:
(i) oral presentation and assessment by a panel;
(ii) work done over the project period including daily log-book; and
(iii) final report.

In order to ensure that uniform standards are being used to assess different projects by different assessors, a form for project assessment to guide the Project Panel is used. The Project Panel, which is composed of the Programme Leader, staff members from teaching sections and the Project Management Team, will oversee the overall standard of the projects to ensure a reasonable degree of uniformity of assessment.

6.3 Guidelines on the Operation of the Honours Project

(i) Project Plan

Each student is required to submit a lucid, comprehensive Project Plan to his/her supervisor, which will be used as the basis of project development.

In the Project Plan, the following points should be included:
- Statement of problems and objectives
- Result of literature survey conducted (if any)
- Approach to tackle the problem
- Outline design of hardware and software
- Preliminary project schedule

(ii) Daily Log-Book

Students are required to submit a daily log-book with the final report. The log-book should record anything that is important to the project. Typical contents include monthly summaries, notes of meetings, planning and
actions, design details, experimental data and analysis, observations and remarks. The daily log-book will be reviewed, signed and dated by the supervisor(s) at least once a month.

(iii) Mid-sessional Progress Report

Students are required to prepare a mid-sessional progress report in mid-December. One copy of the progress report should be submitted to the supervisor, and another one to the General Office of the Department. This forms the basis for the supervisors to review the progress against the declared objectives, and to obviate any discrepancies if necessary.

(iv) Group and Industrial Projects

In addition to submitting reports and giving presentation at the end of the semesters, students taking group or industrial projects are required to submit progress reports in October and March.

(v) Oral Presentation

Students are required to present their projects to their classmates and staff during the project presentation week.

(vi) Submission of Project Report

Supervisors will ensure that their project students would finish their project development so that sufficient time should be available for students to prepare their written final reports. Two hardcopies and one softcopy of the final report are required for each project.

(vii) Demonstration

Each student has to set up a poster and/or the final product in the laboratory to demonstrate the project to students, staff and industrialists.
7. **PRACTICAL TRAINING**

Students are required to undergo training at the University’s Industrial Center (IC), accumulating 5 training credits outside the 99-credit curriculum. The IC training is an important part of the Programme in which students are given hands-on training on various subject matters related to computer literacy, usage of mathematical packages, design and fabrication of prototype of multimedia electronic product. The IC training is good for students to master skills and knowledge in an authentic environment.

Students will be assessed and graded in the normal manner from A+ to F. Moreover, the grades obtained from these computer training courses will be counted towards the GPA but not to the Weighted GPA.

8. **WORK-INTEGRATED EDUCATION (WIE)**

8.1 WIE is a mandatory component of the programme. There can be several routes or options for the students to pursue Work-Integrated Education (WIE). These options include the Cooperative Education Scheme (CES), Sandwich mode of study, Preferred Graduate Development Programme (PGDP), Industrial Projects, and other workplace training opportunities provided by the University or found by students themselves.

8.2 Credits Requirement

In order to graduate from this programme, students must attain a minimum of one WIE training credit within the period of study. WIE credits to be earned by students may vary in a range of 1 to 39 credits. Following the Faculty of Engineering’s guideline, students will be awarded one WIE training credit for acquiring every two weeks’ full-time training. WIE training credits will not be counted towards the Grade Point Average (GPA) nor the Weighted GPA (WGPA). After assessing the student’s training performance, a Pass or a Fail grade will be awarded to the student on his/her WIE component. Depending on the actual job duration, the number of training credits obtained by the students varies. For instance, in the case of CES mode of study, the student will earn a maximum of 39 WIE credits over a period of 79 weeks of full-time employment. In the case of Sandwich training, the number of WIE credits earned over a period of 1-year full-time employment will be 26. For the case of Industrial Attachment or Industrial Project, normally 2 WIE credits will be earned by the student over a period of 4 weeks of workplace training. For the case of PGDP, the nominal working period is 2 months, resulting in 4 WIE credits.
The WIE credits will be reflected in the Co-curricular Activities Transcript of the student, but will not be counted towards the non-credit bearing co-curricular activities as stated in Section 9.

8.3 Intended Learning Outcomes of WIE

Since WIE can be taken in different forms and applied to different kinds of job, the learning outcomes to be achieved will vary depending on the job nature and its duration engaged by the student. However, based on the experience gained from operating the CES and Sandwich modes of the Programme, WIE can bring a lot of advantages to students’ learning both in the profession-specific areas and in their all-round development. The intended learning outcomes of the WIE component are elaborated in the following paragraph.

On successful completion of WIE component, the students will be able to:

(i) Apply knowledge and skills learned from the Programme on the job in a broad context of networking and multimedia profession.
(ii) Recognize the operation and requirement of real-life business, leading to the development of entrepreneurship, global outlook, professional ethics, social and cultural understanding.
(iii) Recognize the expectation of employers, hence leading to better employability.
(iv) Develop their all-round attributes such as interpersonal skills and leadership.
(v) Develop their critical and creative thinking, and problem-solving skills while taking into account various real-life constraints, helping them to pursue lifelong learning and continuing professional development.

8.4 Structure of the WIE Component(s)

WIE component under the Programme can be in many forms, namely Cooperative Education Scheme, Sandwich Training, Industrial Attachment, Industrial Project, Preferred Graduate Development Programme, and other job opportunities.

8.4.1 Cooperative Education Scheme (CES) (EIE387)

Under this Scheme, the students engage in WIE after the second year of study in the Programme. From Semester 3 of Year 2 up to Semester 1 of Year 4, students will take up a full-time job to work. Concurrently, they will pursue their study of the remaining curriculum through a “day-release” (the student is released from the job
one day per week by the employer) arrangement. The advantage of the CES mode of WIE is that the students can engage in larger scale of projects and are assumed to bear more responsibilities as a result of a fairly long period of employment (1.5 years). Furthermore, there may be possibility for the student to stay with the job “non-stop” after graduation. The WIE performance of the student in CES mode is assessed and a grade is assigned to the subject EIE387.

8.4.2 Sandwich Training (EIE388)

The Sandwich mode of WIE is quite similar to the CES, except that its workplace training duration is not as long as CES. After the second year of study, the students will engage in a full-time job for one year. On completion of the WIE component in the Sandwich mode, the student will return to the University to continue the study of the remaining curriculum. The WIE performance of the student in Sandwich Training mode is assessed and a grade is assigned to the subject EIE388.

8.4.3 Industrial Project

Industrial projects are Honours Projects working with the industry. Students working on an industrial project will pursue the project in the company for a certain period of time. With the arrangement, the students will work with a real-life project in the real working environment.

8.4.4 Preferred Graduate Development Programme (PGDP)

Under the PGDP, students will engage in a real working environment by working in a company which is a partner of the PGDP programme coordinated by the SAO. The duration is usually several weeks in the summer vacation period. Such kind of training opportunity is also recognized as a WIE component.

8.4.5 Other Job Opportunities

It is possible that the students themselves find a job to work with during the summer vacation. This kind of job opportunity will be judged by the Department whether it is helpful to the students in achieving the intended learning outcomes of WIE. The students and the Personal Tutors/WIE Coordinators will work collaboratively with regard to the job selection and the subsequent training contents. The Department will constantly monitor the progress. At the end of the training, an assessment will be made on the achievement of learning outcomes by students.
8.5 Guidelines for Operation and Supervision of WIE

The Department adopts a set of strategies to support students’ learning in the workplace. The followings are the details of the operations at different stages.

8.5.1 Preparation

The Department will actively align with the industry to get WIE placement opportunities for students. It is important for students to be fully aware of the benefits brought by WIE. Students will be asked to attend employment seminars as early as possible. Through this type of arrangement, the students in all years will be better prepared for job hunting and employment in advance. Students will also be able to realize the benefits for engaging in WIE and the importance of taking an active role in completing the training with the best effort.

8.5.2 Operation

There will be WIE Coordinators overseeing all matters related to WIE activities under the Programme. The WIE Coordinators are the academic staff members of the Department responsible for the organization and operation of WIE activities as well as Practical Training. To guide and monitor students in obtaining the WIE component, each student will be assigned an academic supervisor (who is also the student’s Personal Tutor) from the Department. The student and his/her Personal Tutor will jointly plan the WIE details, such as job selection, training plan, logging of activities, reporting, and assessment.

In the case that the student finds job placement(s) on his/her own, the Personal Tutor will work with the student to design the learning outcomes if the Personal Tutor finds the placement suitable to be recognized as a WIE activity. The Personal Tutor will make frequent contacts with the student and, if appropriate, the employer to monitor the progress of the student.

8.5.3 Monitoring and assessment

Each student will be guided by his/her personal tutor when conducting the WIE training. The student’s work will also be monitored continuously and an assessment will be given when the WIE placement is completed.
8.5.4 Assessment of the WIE Component(s)

The objective of assessment is to determine what has been achieved by the student through WIE. The actual type of work and duration will vary from case to case. For instance, there will be students taking 2-week full-time jobs while some other may undergo a 1.5-year CES training. Hence an assessment framework is set out in the following as a general guideline.

(i) Continuous Assessment

The Personal Tutor may visit the student during the training period so that the Personal Tutor and the employer will be able to discuss the student’s performance together. This will give better feedback on the student’s performance before the training is completed. In the case of CES or Sandwich training, the student is also required to keep a training logbook to document the details about the training received. The training logbook will be inspected by the training supervisor and the Personal Tutor regularly. When the training is completed, the training logbook will be submitted to the Personal Tutor for assessment.

(ii) Report

After the training is completed, the student is required to submit a report to the Personal Tutor. The details to be contained in the report should be commensurate with the training duration. In the report, the student should describe the training received, the objectives that have been achieved, and the learning gained. The student may also conduct a self-evaluation on his/her own performance.

(iii) Employer Evaluation

At the end of the training period, the employer will provide an evaluation of the student assessing the student’s on-the-job performance and all-round development.

(iv) Overall Assessment

An overall assessment of the student’s performance will be made by the Personal Tutor by considering all the assessment components as stated in Section 8.5.4(i)-(iii). A pass grade will be given to the student upon
satisfactory completion of the WIE component; otherwise a failure grade will be given.

9. CO-CURRICULAR ACTIVITIES

9.1 Students are required to participate in at least 6 cumulative hours of non-credit bearing co-curricular activities (CCA) in order to satisfy the overall requirement of general education before graduation. The said duration can be a combination of a number of recognized CCA. The scope of activities recognized for fulfilling the requirement of mandatory CCA is determined by Student Affairs Office (SAO) (http://www.polyu.edu.hk/sao/cca) and outlined as follows:

(i) The CCA is non-credit bearing and non-course-required.
(ii) The learning outcomes of such activities/programmes should be able to broaden students’ horizon, and inspire them to actualize all-round development in terms of the strengthening of competencies under the PolyU strategic objectives 1.1*.
(iii) The format of these activities can be structured short courses, experiential learning, workshops, competitions, talks and seminars, study tour, voluntary work within PolyU and Community Service Learning Programme, etc.
(iv) Community projects can be also recognized as co-curricular activities if the community services are endorsed by faculty/school/department. Community projects with pre-training and/or briefing sessions are more desirable.
(v) The activities should be organized or co-organized by PolyU faculties/schools/departments/units/committees, and/or endorsed by the aforesaid parties as fulfilling the above criteria. The organizer of these activities should ensure that quality assurance mechanism is in place as a measurement of student learning outcome.

* Poly U strategic objectives 1.1:
To ensure that each programme must contain, where appropriate, elements that would enhance students’ all-round development, particularly in those areas listed in the objective; so as to develop a basic ‘core-competence’ in our graduates.

9.2 Exception

Activities like internship, placement, paid work, and contribution made by office-bearers in student bodies are NOT considered as CCA. Activities counted as Work-integrated Education (WIE) should not be counted as CCA.
9.3 Fulfilment Status

If students would like to fulfil the mandatory CCA requirement, they should first check with the organizer or the Department whether the activities they are going to participate in are recognized CCA. After students’ participation in recognized CCA, the organizer or the Department would normally input the students’ participation information into the Co-curricular Achievement Transcript (CAT) administered by SAO. Students may preview their CAT online to check their fulfilment status at http://www.polyu.edu.hk/sams/ (view the CAT category titled “Mandatory Requirement”).

Details of student participation in such co-curricular activity are shown in the CAT category titled “Developmental Programme” and/or “Contribution to University”. However, such fulfilment record originated from student participation in developmental programmes will be uploaded to CAT system normally at the end of the semester.

10. DEPARTMENTAL UNDERGRADUATE PROGRAMME COMMITTEE

10.1 The Departmental Undergraduate Programme Committee, comprising of Programme Leaders of all degree and higher diploma programmes hosted by the Department, Head of Department, representative from the Departmental Learning and Teaching Committee, teaching staff representatives, representatives from major serving departments (AMA, AP, COMP, ELC, IC and SD), and students representatives from each programme, is responsible for programme review and development.

10.2 The Committee will collect and consider, on a regular basis, the views of students, graduates, staff, the departmental academic advisor, the programme team and the Advisory Committee on the relevance and currency of the syllabi, the standards of the examinations, the level of staff research and consultancy activity, the development of the programme, the adequacy of resources and the local and world wide trends related to electronic and information engineering. Another source of student feedback information for teaching staff is the University’s Student Feedback Questionnaire (SFQ) Exercise. Detailed information about the SFQ exercise is available on the EDC website http://edc.polyu.edu.hk/sfq-student.htm.
11. “REGULAR” STUDENT, “SELF-PACE” STUDENT, AND STUDENT STATUS

11.1 Students’ eligibility for the range of services provided by the University will be governed by the students’ status, which is determined with reference to the mode of attendance of the academic programmes enrolled and/or the study load as described in Sections 11.5 to 11.7 below.

11.2 Students are normally expected to follow the specified progression pattern. These are referred to as “regular” students. Those students who have been given special approval by the Programme Leader and the Head of Department for not following the specified pattern are referred to as “self-paced” students.

11.3 Students who register on programmes without any specified progression pattern are also known as self-paced students.

11.4 Self-paced students, either accelerated or decelerated, are required to seek counselling and approval from the Programme Leader and the Head of Department.

Student status:

11.5 Students enrolling on full-time/sandwich programmes or mixed-mode programme, with a study load of 9 credits or more in a semester, are classified as full-time students.

11.6 (i) Students enrolling on part-time, distance learning, online, and mixed-mode programmes, with a study load of less than 9 credits in a semester, are classified as part-time students.

(ii) Students who enroll on full-time programmes but have been given permission to take less than 9 credits in a semester will be given the option to pay credit fees. If students wish to exercise such option, they have to inform the Department before the end of the add/drop period of that semester. These credit fee paying students are classified as part-time students for that semester.

11.7 Students enrolling on mixed-mode programmes are classified as mixed-mode students. They may engage in a full-time or part-time study load and attend classes either in the evening, in the daytime, or a combination of both. If the mixed-mode students take subjects with a study load reaching the minimum requirement of a full-time student, they will be given full-time status in that semester. Otherwise, they will be given part-time status.
11.8 Students who wish to change their status, from full-time to part-time or from part-time to full-time, will have to seek prior approval from the Programme Leader and Head of Department before the end of the add/drop period of that semester. In all cases of change of status, approval of the Department, followed by confirmation by the AS on whether the change of student status is in order, are required.

12. SUBJECT REGISTRATION (INCLUDING ADD / DROP / WITHDRAWAL OF SUBJECTS)

12.1 In addition to programme registration, students need to register for the subjects at specified periods prior to the commencement of the semester. An add/drop period will also be scheduled for each semester/term. Students are not allowed to drop subjects after the add/drop period. Requests for dropping of subjects after the add/drop period will only be considered under extenuating circumstances and, if approved, will be regarded as subject withdrawal. Requests submitted after the commencement of the examination period will not be considered. For approved applications, the tuition fee paid for the subject will be forfeited and the withdrawal status of the subject will be shown in the examination result notification and transcript of studies but will not be counted towards the calculation of GPA.

12.2 Students may register subjects for the following semester with reference to the subject results decided by the Subject Assessment Review Panel.

12.3 The pre-requisite requirements of a subject must have been fulfilled before a student registers for that subject. However, the subject offering department has the discretion to waive the pre-requisite requirements of a subject, if deemed appropriate. If the pre-requisite subject concerned forms part of the requirements for award, the subject has to be passed in order to satisfy the graduation requirements for the programme concerned despite the waiving of the pre-requisite.

12.4 Subject to the maximum study load of 21 credits per semester and the availability of study places, students are allowed to take additional subjects on top of the prescribed credit requirement for award before they become eligible for graduation. For students of full-time programmes, they can take additional subjects from within or outside their programme curriculum. Students can choose freely from those subjects which are available for selection (unless they are barred because of pre-requisites).

12.5 Starting from the 2007/08 cohort of intakes, students studying the foundation year of a 4-year curriculum Bachelor's degree programme will be treated in the same way as students on a 3-year curriculum, in respect of taking additional subjects. Thus, the
additional number of subjects taken (which are over and above that required by the programme) will be graded and shown on transcripts. They will be counted in the cumulative and semester GPA, but not necessarily in the weighted GPA (when they are being considered for their award classification). These additional subjects cannot be taken by students on a pass/fail basis and students’ requests to audit such subjects will be considered by the Department on a case by case basis.

13. ZERO SUBJECT ENROLMENT

No students will be allowed to take zero subject in any semester unless they have obtained prior approval from the Programme Leader and the Head of Department and in any case not later than the end of the add/drop period; otherwise they will be classified as having unofficially withdrawn from their programme. Students who have been approved for zero subject enrolment (i.e. taking zero subject in a semester) are allowed to retain their student status and continue using campus facilities and library facilities. Any semester in which the students are allowed to take zero subject will nevertheless be counted towards the maximum period of registration.

14. SUBJECT EXEMPTION

Students may be exempted from taking any specified subjects, including mandatory language or general education subjects, if they have successfully completed similar subjects previously in another programme or have demonstrated the level of proficiency/ability to the satisfaction of the subject offering department. Subject exemption is normally decided by the subject offering department (for “Broadening” GE subjects and for all subjects at admission stage, the decision will be made by the programme offering department). However, for applications which are submitted by students who have completed an approved student exchange programme, the subject exemption is to be decided by the host department in consultation with the subject offering departments. In case of disagreement between the host department and the subject offering department, the two Faculty Deans/School Board Chairman concerned will make a final decision jointly on the application. If students are exempted from taking a specified subject, the credits associated with the exempted subject will not be counted towards the award requirements (except for exemptions granted at admission stage). It will therefore be necessary for the students to consult the host department and take another subject in order to satisfy the credit requirement for the award.
15. CREDIT TRANSFER

15.1 Students may be given credits for recognised previous studies (including mandatory language or general education subjects; please refer also to Section 3.3 above) and the credits will be counted towards meeting the requirements for award. Transferred credits may be counted towards more than one award. The granting of credit transfer is a matter of academic judgment. In assessing the transferability of subjects previously taken, the syllabus of that subject should be carefully scrutinized to ascertain that it is comparable to the PolyU’s curriculum. Whether the previous studies are from institutions on credit-based or non-credit-based system should not be a matter of concern, and the subject size need not be a perfect match. To ascertain the academic standing of the institution offering the previous studies, the Department might need to request the institutions concerned to provide more relevant information.

15.2 Credit transfer may be done with or without the grade being carried over; the former should normally be used when the credits were gained from PolyU. Credit transfer with the grade being carried over may be granted for subjects taken from outside the University, if deemed appropriate, and with due consideration to the academic equivalence of the subjects concerned and the comparability of the grading systems adopted by the University and the other approved institutions. Subject credit transfer is normally decided by the subject offering Department (for "Broadening" GE subjects, however, the decision will be made by the programme offering Department). However, for applications which are submitted by students who have completed an approved student exchange programme, the decision will be made by the programme offering Department in consultation with the subject offering Departments. As the application for credit transfer may involve subjects offered by more than one Department, the programme offering Department should coordinate and check whether the maximum limit for credit transfer for a student has been exceeded, and whether the student has fulfilled the residential requirement of the University.

15.3 In case of disagreement between the programme offering Department and the subject offering Department, the two Faculty Deans/School Board Chairmen concerned will make a final decision jointly on the application.

15.4 Normally, not more than 50% of the credit requirement for award may be transferable from approved institutions outside the University. For transfer of credits from programmes offered by PolyU, normally not more than 67% of the credit requirement for award can be transferred. In cases where both types of credits are being transferred (i.e. from programmes offered by PolyU and from approved institutions...
outside the University), not more than 50% of the credit requirement for award may be transferred.

15.5 If the transferred credits are part of a PolyU programme which is accredited by a professional body, the Department concerned should ensure that the transferred credits will also meet the requirement of the relevant professional body.

15.6 If a student is waived from a particular stage of study on the basis of advanced qualifications held at the time of admission, the student concerned will be required to complete fewer credits for award. For these students, the exempted credits will be counted towards the maximum limit for credit transfer when students apply for further credit transfer after their admission.

15.7 Notwithstanding the upper limits stipulated in Section 15.4 above, (and unless professional bodies stipulate otherwise) students may be given more credit transfer than these upper limits (e.g. upon completion of exchange activity as mentioned in Section 15.8 below), subject to their satisfying the residential requirement.

15.8 Credit transfer can be applicable to credits earned by students through study at an overseas institution under an approved exchange programme. Students should, before they go abroad for the exchange programme, seek prior approval from the programme offering Department (who will consult the subject offering Departments as appropriate) on their study plan and credit transferability. As with all other credit transfer applications, the Departments concerned should scrutinise the syllabuses of the subjects which the students are going to take at the overseas institution, and determine their credit transferability based on academic equivalence with the corresponding subjects on offer at the PolyU, and the comparability of the grading systems adopted by PolyU and the overseas institution. The transferability of credits, and the suitability for allowing grades to be carried over, must be determined and communicated to students before they go abroad for the exchange programme. In order to overcome the problems associated with subject-to-subject mappings, block credit transfer rather than subject-by-subject credit transfer can be given.

15.9 All credit transfers approved will take effect only in the semester for which they are approved. A student who applies for transfer of credits during the re-enrolment or the add/drop period of a particular semester will only be eligible for graduation at the end of that semester, even if the granting of credit transfer will immediately enable the student to satisfy the credit requirement for the award.
16. **DEFERMENT OF STUDY**

16.1 Deferment of study is applicable to those who have a genuine need to extend the maximum period of registration. Approval from the Programme Leader and the Head of Department is required. The deferment period will not be counted as part of the maximum period of registration.

16.2 Application for deferment of study will be entertained only in exceptional circumstances from students who have not yet completed the first year of a full-time or sandwich programme.

16.3 Where the period of deferment of study begins during a stage for which fees have been paid, no refund of such fees will be made.

16.4 Students who have been approved for deferment are not entitled to enjoy any campus facilities during the deferment period.

17. **PRINCIPLES OF ASSESSMENT**

17.1 The prime purpose of assessment is to enable students to demonstrate that they have met the aims and objectives of the academic programme, in particular that they have fulfilled the requirement of each subject and have, at the end of their study achieved the standard appropriate to the award. Appropriate methods of assessment will be employed to achieve this purpose. The assessment methods will also allow discrimination between the performance of students in each subject.

17.2 Assessment will also serve as feedback to students. Students will be informed of their performance in the assessment so that they are aware of their progress and attainment.

17.3 The ultimate authority in the University for the confirmation of academic decisions is the Senate, but for practical reasons, the Senate has delegated to the Faculty/School Boards the authority to confirm the decisions of Boards of Examiners provided these are made within the framework of the general assessment regulations within the University. Recommendations from Board of Examiners which fall outside these regulations shall be ratified by VP(AD) and reported to the Senate.
18. **ASSESSMENT METHODS**

18.1 Students’ performance in a subject shall be assessed by continuous assessment and/or examinations. Where both methods are used, the weighting of each in the overall subject grade shall be clearly stated in the definitive programme document.

18.2 Continuous assessment may include tests, assignments, projects, laboratory work, field exercises, presentations and other forms of classroom participation. The contribution made by each student in continuous assessment involving a group effort shall be determined and assessed separately.

18.3 Assessment methods and parameters of subjects shall be determined by the subject offering department.

18.4 At the beginning of each semester, the subject teacher should inform students of the details of the methods of assessments to be used within the assessment framework as specified in the definitive programme document.

19. **SUBJECT ASSESSMENT REVIEW PANEL (SARP)**

SARP consists of the Head of the Department (as Chairman), the Programme Leader and the relevant subject examiners. SARP is responsible for monitoring the academic standard and quality of subjects and ratifying of subject grades. The Panel will review the distribution of grades within a subject and finalize the grades at the end of each semester/term before submission to the Board of Examiners. The Board of Examiners will not attempt to change any grades.

20. **BOARD OF EXAMINERS (BoE)**

20.1 The BoE will meet at the end of each semester (except for Summer Term unless there are students who are eligible to graduate after completion of Summer Term subjects) and is responsible to the Senate for making:

(i) a decision on the classification of awards to be granted to each student on completion of the programme;

(ii) a decision on deregistration cases; and

(iii) a decision on cases with extenuating circumstance.

20.2 These decisions are made by the full BoE at the end of each semester in the light of the standard of student achievement appropriate to the award to which the programme is
designed to lead, the aims of the programme, the performance on the programme in previous years, the general assessment regulations of the University and the specific programme regulations, and good practice established in the University and elsewhere.

20.3 The BoE will not attempt to change the grades for any student in any subject nor condone failures. The above decisions of the BoE, except those on award and deregistration cases which are straightforward, will be ratified by the Faculty Board. The Faculty Board may refer the decisions back to the BoE for further consideration and explanation.

20.4 Any decisions by the BoE outside the general assessment regulations of the University, supported by the Faculty Board, shall be referred to VP(AD) for ratification. All such cases shall be reported to the Senate. Decisions by BoE outside the programme regulations but within the general assessment regulations of the University fall within the authority of the Faculty Board.

20.5 Students shall be formally notified of decisions affecting them after the BoE meeting except for those cases which require ratification of the Faculty Board. These latter students shall be formally notified of decisions after the Faculty Board’s ratification or, if a decision is outside the general assessment regulations, after VP(AD) ratifies that decision. Any prior communication of results to these students shall be subject to formal ratification.

21. PROGRESSION / ACADEMIC PROBATION / DEREGISTRATION

21.1 The Board of Examiners shall, at the end of each semester (except for Summer Term unless there are students who are eligible to graduate after completion of Summer Term subjects), determine whether each student is:

(i) eligible for progression towards an award; or
(ii) eligible for an award; or
(iii) required to be deregistered from the programme.

21.2 When a student has a Grade Point Average (GPA) (see Section 25.3 below) lower than 2.0, he/she will be put on academic probation in the following semester. Once when a student is able to pull his GPA up to 2.0 or above at the end of the probation semester, the status of “academic probation” will be lifted. The status of “academic probation” will be reflected in the examination result notification but not in transcript of studies.
21.3 A student will have ‘progressing’ status unless he falls within the following categories, either of which may be regarded as grounds for deregistration from the programme:

(i) the student has exceeded the maximum period of registration for that programme as specified in the definitive programme document; or

(ii) the student’s GPA is lower than 2.0 for two consecutive semesters and his Semester GPA in the second semester is also lower than 2.0; or

(iii) the student’s GPA is lower than 2.0 for three consecutive semesters.

21.4 The progression of students to the following academic year will not be affected by the GPA obtained in Summer Term, unless the programme enrolled falls into the category described in Section 21.5 below and otherwise specified in this programme booklet.

21.5 Exceptions to Section 21.4 above could only be made if the Summer Term study is mandatory for all students of the programme and that the study constitutes a substantial requirement for graduation.

21.6 Notwithstanding Sections 21.3(ii) and 21.3(iii) above, a student may be deregistered from the programme enrolled before the time specified in Sections 21.3(ii) and 21.3(iii) above if his academic performance is poor to the extent that the Board of Examiners deems that his chance of attaining a GPA of 2.0 at the end of the programme is slim or impossible.

21.7 In the event that there are good reasons, the Board of Examiners has the discretion to recommend that students who fall into categories as stated in Sections 21.3(ii) or 21.3(iii) above be allowed to stay on the programme, and these recommendations should be presented to the relevant Faculty/School Board for final decision.

22. APPEAL AGAINST ASSESSMENT RESULTS

A student may appeal against a decision of a Subject Assessment Review Panel or the Board of Examiners within 5 working days upon the public announcement of the examination results. The procedures for appeals against examination results are detailed in the Student Handbook.
23. RETAKING OF SUBJECTS

23.1 Normally, students may retake only those subjects for which they have failed, i.e. obtained an F grade.

23.2 Students are not allowed to retake subjects for which they have passed with grade C or above. Retaking of a subject which has been passed at grade D or D+ will require the approval of the Programme Leader.

23.3 The number of retakes of a failed subject is not restricted. Only the grade obtained in the final attempt of retaking will be included in the calculation of the Grade Point Average (GPA). The grades obtained in previous attempts will only be reflected in transcript of studies.

23.4 Section 23.3 above applies to the retake of the same subject only, and in cases where a student takes another subject to replace a failed subject, the fail grade will be retained and taken into account in the calculation of the GPA, despite the passing of another subject.

24. EXCEPTIONAL CIRCUMSTANCES

Absence from an assessment component

24.1 If a student is unable to complete all the assessment components of a subject, due to illness or other circumstances which are beyond his control and considered by the Subject Assessment Review Panel as legitimate, the Panel will determine whether the student will have to complete a late assessment and, if so, by what means. This late assessment shall take place at the earliest opportunity, and before the commencement of the following academic year (except that for Summer Term, which may take place within 3 weeks after the finalisation of Summer Term results). If the late assessment cannot be completed before the commencement of the following academic year, the Faculty/School Board Chairman shall decide on an appropriate time for completion of the late assessment.

Aegrotat award

24.2 If a student is unable to complete the requirements of the programme in question for the award due to very serious illness, or other very special circumstances which are beyond his control, and considered by the Board of Examiners as legitimate, the
Faculty/School Board will determine whether the student will be granted an aegrotat award. Aegrotat award will be granted under very exceptional circumstances.

24.3 A student who has been offered an aegrotat award shall have the right to opt either to accept such an award, or request to be assessed on another occasion to be stipulated by the Board of Examiners; the student’s exercise of this option shall be irrevocable.

24.4 The acceptance of an aegrotat award by a student shall disqualify him from any subsequent assessment for the same award.

24.5 An aegrotat award shall normally not be classified, and the award parchment shall not state that it is an aegrotat award. However, the Board of Examiners may determine whether the award should be classified provided that they have adequate information on the students’ academic performance.

Other particular circumstances

24.6 A student’s particular circumstances may influence the procedures for assessment but not the standard of performance expected in assessment.
25. GRADING

25.1 Assessment grades shall be awarded on a criterion-referenced basis. A student’s overall performance in a subject shall be graded as follows:

<table>
<thead>
<tr>
<th>Subject grade</th>
<th>Short description</th>
<th>Elaboration on subject grading description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>Excellent</td>
<td>The student’s work is outstanding. It exceeds the subject learning outcomes in all regards.</td>
</tr>
<tr>
<td>A</td>
<td>Good</td>
<td>The student’s work is excellent. It exceeds the subject learning outcomes in nearly all regards.</td>
</tr>
<tr>
<td>B+</td>
<td>Good</td>
<td>The student’s work is very good. It exceeds the subject learning outcomes in the majority of regards.</td>
</tr>
<tr>
<td>B</td>
<td>Good</td>
<td>The student’s work is good. It exceeds the subject learning outcomes in some regards.</td>
</tr>
<tr>
<td>C+</td>
<td>Satisfactory</td>
<td>The student’s work is wholly satisfactory. It fully meets all the subject learning outcomes.</td>
</tr>
<tr>
<td>C</td>
<td>Satisfactory</td>
<td>The student’s work is satisfactory. It largely meets all the subject learning outcomes.</td>
</tr>
<tr>
<td>D+</td>
<td>Marginal</td>
<td>The student’s work is barely adequate. It fails marginally to meet all the subject learning outcomes.</td>
</tr>
<tr>
<td>D</td>
<td>Marginal</td>
<td>The student’s work is weak. It fails to meet the subject learning outcomes in some regards.</td>
</tr>
<tr>
<td>F</td>
<td>Failure</td>
<td>The student’s work is inadequate. It fails to meet most of the subject learning outcomes.</td>
</tr>
</tbody>
</table>

‘F’ is a subject failure grade, whilst all others (‘D’ to ‘A+) are subject passing grades. No credit will be earned if a subject is failed.
25.2 A numeral grade point is assigned to each subject grade, as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>4.5</td>
</tr>
<tr>
<td>A</td>
<td>4</td>
</tr>
<tr>
<td>B+</td>
<td>3.5</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>C+</td>
<td>2.5</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>D+</td>
<td>1.5</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>

25.3 At the end of each semester/term, a Grade Point Average (GPA) will be computed as follows, and based on the grade point of all the subjects:

\[
\text{GPA} = \frac{\sum_n \text{Subject Grade Point} \times \text{Subject Credit Value}}{\sum_n \text{Subject Credit Value}}
\]

where \(n \) = number of all subjects (inclusive of failed subjects) taken by the student up to and including the latest semester/term, but for subjects which have been retaken, only the grade obtained in the final attempt will be included in the GPA calculation.

In addition, the following subjects will be excluded from the GPA calculation:

(i) Exempted subjects
(ii) Ungraded subjects
(iii) Incomplete subjects
(iv) Subjects for which credit transfer has been approved without any grade assigned
(v) Subjects from which a student has been allowed to withdraw (i.e. those with the grade ‘W’)

Subject which has been given an “S” subject code, i.e. absent from examination, will be included in the GPA calculation and will be counted as “zero” grade point. GPA is
thus the unweighted cumulative average calculated for a student, for all relevant
subjects taken from the start of the programme to a particular reference point of time.
GPA is an indicator of overall performance and is capped at 4.0.

26. ELIGIBILITY FOR AWARD

For students entering the programme via the local Advanced Level examination system, they
will pursue a 3-year study in Year 1, Year 2 and Year 3. For these students, the requirements
for BSc(Hons) in IMT award are specified in the following Sections 26.1 to 26.3. For students
entering the programme from Chinese Mainland or countries which have an education system
different from the current Hong Kong system, they will have to pursue a 4-year curriculum in
this programme. They will have to satisfy the 32 credits requirement as specified in the
Foundation-Year curriculum in addition to the requirements as stated in Sections 26.1 to 26.3
below in order to be eligible for the BSc(Hons) in IMT award.

26.1 Students are required to acquire a total of 99 credits in order to graduate from this
Programme.

A student would be eligible for award if he/she satisfies all the subject requirements
listed below:

(i) Complete all compulsory subjects, the practical training and the honours
project.

(ii) Complete 5 technical electives, and two 2-credit General Education subjects
(one under the “China Studies” category and one under the “Broadening”
category).

(iii) Satisfy the residential requirement for at least 1/3 of the credits to be
completed for the award he is currently enrolled, unless the professional
bodies stipulate otherwise.

(iv) Obtains at least 1 WIE credit as set out in Section 8.

(v) Fulfills the requirement of co-curricular activities as set out in Section 9.

(vi) Achieves a GPA of 2.0 or above.

(vii) Fulfills the University language requirements as set out in Section 4.2.

26.2 A student is required to graduate as soon as he/she satisfies all the conditions for
award as set out in Section 26.1 above.

26.3 Subject to the maximum study load of 21 credits per semester, a student may take
more credits than he/she needs to graduate up to a maximum of 9 credits on top of
the prescribed credit requirements for his/her award in or before the semester within which he/she becomes eligible for award.

27. GUIDELINES FOR AWARD CLASSIFICATION

27.1 The guidelines for award classification are stated in the following. In using these guidelines, the Board of Examiners shall exercise its judgement in coming to its conclusions as to the award for each student, and where appropriate, may use other relevant information.

27.2 This programme uses Weighted GPA as a guide for helping to determine award classifications. All Level 2 subjects carry a weighting of 0.2. All Level 3, Level 4 and Level 5 subjects carry a weighting of 0.4. The weighting of each level is a measure of the relevance of the level to the classifications of the degree.

Weighted GPA will be computed as follows:

\[
\text{Weighted GPA} = \frac{\sum_{n} \text{Subject Grade Point} \times \text{Subject Credit Value} \times W_i}{\sum_{n} \text{Subject Credit Value} \times W_i}
\]

where \(W_i\) = weight assigned according to the level of the subject.

\(n\) = number of all subjects counted in GPA calculation as set out in Section 25.3, except those exclusions specified in Section 27.3.

Same as GPA, Weighted GPA is capped at 4.0.

27.3 Any subjects passed after the graduation requirement has been met or subjects taken on top of the prescribed credit requirements for award shall not be taken into account in the grade point calculation for award classification. However, if a student attempts more elective subjects (or optional subjects) than those required for graduation in or before the semester in which he/she becomes eligible for award, the elective subjects (or optional subjects) with a higher grade/contribution shall be included in the grade point calculation (i.e. the excessive subjects attempted with a lower grade/contribution, including failed subjects, will be excluded).
27.4 The following are guidelines for Board for Examiners’ reference in determining award classifications:

<table>
<thead>
<tr>
<th>Award Classification</th>
<th>Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>The student’s performance/attainment is outstanding, and identifies him/her as exceptionally able in the field covered by the programme in question.</td>
</tr>
<tr>
<td>2nd (Division I)</td>
<td>The student has reached a standard of performance/attainment which is more than satisfactory but less than outstanding.</td>
</tr>
<tr>
<td>2nd (Division II)</td>
<td>The student has reached a standard of performance/attainment judged to be satisfactory, and clearly higher than the ‘essential minimum’ required for graduation.</td>
</tr>
<tr>
<td>3rd</td>
<td>The student has attained the ‘essential minimum’ required for graduation at a standard ranging from just adequate to just satisfactory.</td>
</tr>
</tbody>
</table>

27.5 A Pass-without-Honours degree award will be recommended only under exceptional circumstances, when the student has demonstrated a level of final attainment which is below the ‘essential minimum’ required for graduation with Honours from the programme in question, but when he has nonetheless covered the prescribed work of the programme in an adequate fashion, while failing to show sufficient evidence of the intellectual calibre expected of Honours degree graduates. For example, if a student in an Honours degree programme has a Grade Point Average (GPA) of 2.0 or more, but his Weighted GPA is less than 2.0, he may be considered for a Pass-without-Honours classification.

27.6 The following is a set of indicators, for Boards of Examiners’ reference, which can be used in helping to determine award classification:

<table>
<thead>
<tr>
<th>Award Classification</th>
<th>Weighted GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>3.7+ - 4</td>
</tr>
<tr>
<td>2nd (Division I)</td>
<td>3.2+ - 3.7+</td>
</tr>
<tr>
<td>2nd (Division II)</td>
<td>2.3+ - 3.2+</td>
</tr>
<tr>
<td>3rd</td>
<td>2.0 - 2.3+</td>
</tr>
</tbody>
</table>

27.7 There is no requirement for the Board of Examiners to produce an award list which conforms to the guidelines in Section 27.6 above.
28. MAJOR IN INTERNET AND MULTIMEDIA TECHNOLOGIES

28.1 Application for Taking Major/Minor Option

Students will be invited in their first year of registration to indicate an irrevocable option of whether to follow a Major/Minor route or to continue with the single-discipline degree. In conjunction with the Major in Internet and Multimedia Technologies (Major in IMT) programme, students may either choose a specific Minor programme, in which a set of specific subjects are prescribed for students to study, or students may just freely select elective subjects to fulfil the credit requirements (such subjects are called *free electives*). Normally a Minor programme requires 18 credits.

28.2 Progression Pattern

If a student chooses to follow the Major/Minor route of study, s/he will basically follow the progression pattern set out below when selecting the subjects to study in Year 1, Year 2 and Year 3. In this regard, s/he should consult the Programme Leader in choosing the subjects to study in a particular stage.

Year 1 — Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMA227</td>
<td>Mathematics I</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>EIE225</td>
<td>Introduction to Electronics and Multimedia Technologies</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>ELC2501</td>
<td>University English I</td>
<td>2</td>
<td>Compulsory</td>
</tr>
<tr>
<td>ENG224</td>
<td>Information Technology</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>ENG236</td>
<td>Computer Programming</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>GE</td>
<td>GE – China Studies</td>
<td>2</td>
<td>Compulsory</td>
</tr>
<tr>
<td>IC291</td>
<td>Practical Training</td>
<td>5</td>
<td>Training Compulsory</td>
</tr>
</tbody>
</table>

Year 1 — Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMA228</td>
<td>Mathematics II</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>EIE210</td>
<td>Electronics Design</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>EIE214</td>
<td>Introduction to Logic Design</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>EIE341</td>
<td>Signals and Systems</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>ELC2502</td>
<td>University English II</td>
<td>2</td>
<td>Compulsory</td>
</tr>
<tr>
<td>ENG236</td>
<td>Computer Programming (cont’d)</td>
<td>---</td>
<td>Compulsory</td>
</tr>
<tr>
<td>SD2492</td>
<td>Product Design and Social Considerations</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>IC291</td>
<td>Practical Training (cont’d)</td>
<td>---</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>
Year 1 — Semester 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC291</td>
<td>Practical Training (cont’d)</td>
<td>---</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Year 2 — Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIE320</td>
<td>Object-Oriented Design and Programming</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>EIE325</td>
<td>Telecommunication Technologies</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>ELC3508</td>
<td>English for Effective Workplace Communication</td>
<td>2</td>
<td>Compulsory</td>
</tr>
<tr>
<td>SD3984</td>
<td>Computer Game Development I</td>
<td>3</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIE320</td>
<td>Object-Oriented Design and Programming</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>EIE325</td>
<td>Telecommunication Technologies</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>ELC3508</td>
<td>English for Effective Workplace Communication</td>
<td>2</td>
<td>Compulsory</td>
</tr>
<tr>
<td>SD3984</td>
<td>Computer Game Development I</td>
<td>3</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIE342</td>
<td>Computer Networks</td>
<td>3</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

5 Major/ Minor/ Free Electives# 15 credits Major/ Minor/ Free

Year 2 — Semester 2

Year 3 — Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBS2065</td>
<td>Chinese for Electronic and Information Engineering</td>
<td>2</td>
<td>Compulsory</td>
</tr>
<tr>
<td>MM2711</td>
<td>Introduction to Marketing</td>
<td>3</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

4 Major/ Minor/ Free Electives# 12 credits Major/ Minor/ Free

Year 3 — Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM2021</td>
<td>Management and Organisation</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>GE</td>
<td>GE – Broadening</td>
<td>2</td>
<td>Elective</td>
</tr>
</tbody>
</table>

3 Major/ Minor/ Free Electives# 9 credits Major/ Minor/ Free

Total credits accumulated for “Major Electives” in Year 2 and Year 3 must be at least 21 credits.
28.3 Credit Requirement for Major in IMT Award

The credit requirement for the Major in EIE award is 78 credits made up by the following subjects and as set out under the “Major in IMT” column in Table 4.1:

- 45 credits from the subjects categorized as COM (compulsory)
- 21 credits from the subjects categorized as ELE (elective)
- 4 credits from the subjects categorized as GE (General Education)
- 6 credits from the subjects categorized as ELC (English Language)
- 2 credits from the subject categorized as CBS (Chinese Language)

28.4 Eligibility for graduation with Major in IMT Award with / without a Minor Award

Students must satisfy the following requirements in order to graduate:

(i) Credit requirement:
 - 78 credits required by the Major in IMT programme as stated in Section 28.3
 - 18 credits required by the specific Minor programme or from subjects of any combination of disciplines (i.e. free electives)
 - A total of not less than 99 credits (if the credits required for the Major and Minor combination are less than 99, students must take extra credits from any level 1 to level 4 subjects to make up the total credit requirement of 99 credits)

(ii) Achieves a GPA of not less than 2.0

(iii) Fulfils the University Language requirements as set out in Section 4.2

(iv) Achieves 5 credits categorized as TRN in Table 4.1

(v) Achieves at least 1 WIE credit as set out in Section 8.2

(vi) Fulfils the requirement of co-curricular activities as set out in Section 9.

28.5 Guidelines for Award Classification (Major / Minor Programme)

(i) For students who have completed a Major/Minor programme, a single classification will be awarded and their award classification will be based on both their "Major GPA" and "Minor GPA". For students who have completed a Major programme combined with free electives, their award classification will be determined by their "Major GPA" and the grades obtained in the free electives.

(ii) "Major GPA" is derived based on all subjects of the Major programme.
(iii) The "Major GPA" will be Weighted GPA to be derived by a mechanism same as that for the Weighted GPA for award classifications of students on the single-discipline degree (see Sections 27.1 to 27.3 above).

(iv) "Minor GPA" is derived based on the 18 credits of Minor study (either a specific Minor or a free combination of electives). "Minor GPA" will be unweighted.

(v) The "Major GPA" and the "Minor GPA" will be presented separately to the Board of Examiners for consideration. The guidelines for determining award classification as stipulated in Sections 27.4 to 27.7 are applicable to Major/Minor studies.

(vi) In order to be eligible for a particular award classification, a student should have comparable standard of performance in both his Major and Minor studies.

(vii) In cases where the attainment of a student in the Minor study may warrant the granting of an award classification different from the one the student deserves for his Major study, the Board of Examiners has the discretion to recommend a classification which better reflects the student's performance on the Major study.

29. SYLLABI

(Please see pages 51 to 163)
SUBJECT DESCRIPTION FORM

Subject Title: Foundation Biology
Subject Code: ABCT102
Number of Credits: 3
Hours Assigned: Lecture 32 hours
Tutorial 10 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
The lectures aim to explain and discuss the knowledge of biology at foundation level which is essential to proceed to higher level of study in biology-related disciplines.

Learning Outcomes:
On successful completion of this subject, students are expected to be able to:

1. understand the basic features and functions of cells;
2. describe the basic structures and functions of body systems;
3. understand the fundamental features of microorganisms; and
4. understand the basic features of ecosystems.

Keyword Syllabus (Indicative):

1. Cells
 - Structures and functions of the cell
 - Homeostasis and transport within the cell
 - Cellular respiration and photosynthesis
 - Cell reproduction - mitosis and meiosis

2. Genetics
 - Fundamentals of genetics
 - Nucleic acids and protein synthesis
 - Inheritance patterns
 - DNA technology

3. Body Functions
 - Organization of human tissues, organs and systems
 - Overview of physiological functions:
 Nervous system, cardiovascular system, respiratory system, digestive system, renal system, immune system, endocrine and reproductive systems

4. Microorganisms
 - Bacteria and viruses
 - Protozoa
 - Algae and fungi

5. Ecology
 - Introduction to ecology and populations

Teaching and Learning Approach:
The teaching and learning approach includes lectures which aim to enrich the knowledge and concepts of biology at foundation level. In addition, written assignments and tutorial sessions are also included for further consolidating the knowledge discussed in lectures. Students will be assessed by written assignments, quizzes and written examination.

Method of Assessment:
Continuous Assessment: 50%
Examination: 50%
Essential Reading:

Reference List:
SUBJECT DESCRIPTION FORM

Subject Title: Fundamental Chemistry
Subject Code: ABCT103
Number of Credits: 3
Hours Assigned: Lecture 36 hours, Tutorial 6 hours
(The students are also expected to spend about 80 hours for self-study.)

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
This subject educates student with fundamental knowledge in chemistry. It is also a bridging course for students previously learned chemistry in a language other than English.
The subject aims to:
1. provide students with a broad fundamental knowledge in chemistry required for the study of science, technology, engineering or related programme; and
2. help student study chemistry effectively in an English-medium learning environment and to acquaint student with the necessary chemical vocabularies.

Learning Outcomes:
On successful completion of this subject, students are expected to be able to:
1. understand the fundamental principles of chemistry;
2. have sufficient chemical knowledge for their chosen field of study; and
3. understand and appreciate the chemical terms and principles that they may encounter in written and oral communication.

Keyword Syllabus:
1. Atomic Structure
 Electromagnetic radiation, hydrogen spectrum, energy levels, electron spin, quantum numbers, dual properties of matter, wave function and probability, uncertainty principle, charge clouds of s, p, d and f orbits, radial distribution curves, electronic configurations of many-electron atoms, Pauli exclusion principle, Aufbau principle, ionization energy, electron affinity, electronegativity, atomic and ionic radii and periodicity.

2. Chemical Bonding
 Ionic bonds, covalent bonds, dative bonds, metallic bonds, van der Waals forces, hydrogen bonds, concepts of valance bond theory and hybridization, resonance, molecular shapes by VSEPR method, molecular orbital theory of homonuclear and heteronuclear diatomic molecules, multi-centre bonding in electron deficient molecules.

3. Properties of Solid
 Solids: amorphous solids, types of crystals, unit cell, co-ordination number, closest packing, crystal structures.

4. General Inorganic Chemistry
 Main group elements and their compounds.

5. General Organic Chemistry

Teaching and Learning Approach:
Lectures will provide students with general outlines of key concepts and guidance on further reading. Lectures will be further consolidated through assignments and tutorials. Students will be assessed by assignments, quizzes as well as an end-of-term written examination.
Method of Assessment:
Continuous Assessment: 60% Examination: 40%

Essential Reading:
SUBJECT DESCRIPTION FORM

<table>
<thead>
<tr>
<th>Subject Title:</th>
<th>Foundation Mathematics I for Science and Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Code:</td>
<td>AMA103</td>
</tr>
<tr>
<td>Number of Credits:</td>
<td>3</td>
</tr>
<tr>
<td>Hours Assigned:</td>
<td>Lecture 28 hours</td>
</tr>
<tr>
<td></td>
<td>Tutorial and Student Student Presentation 14 hours</td>
</tr>
</tbody>
</table>

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
This is a subject to provide students with a solid foundation in Differential and Integral Calculus. It is essential for all undergraduate students of Engineering or Science. The emphasis will be on application of mathematical methods to solving basic engineering science problems.

Learning Outcomes:
On successful completion of this subject, students are expected to be able to:
1. understand the concept of functions and inverse functions;
2. use mathematical induction in various contexts;
3. understand the algebra and geometry of complex numbers and apply complex numbers to solve science and engineering problems;
4. apply mathematical reasoning to analyse essential features of different mathematical problems such as differentiation and integration;
5. apply appropriate mathematical techniques to model and solve problems in science and engineering;
6. extend their knowledge of mathematical techniques and adapt known solutions in different situations;
7. undertake continuous learning.

Keyword Syllabus:
1. **Basic Concepts**
 - Mathematical induction; Functions and inverse functions; Elementary functions, trigonometric functions; Complex numbers; De Moivre’s Theorem; Roots of a complex number.
2. **Differential Calculus**
 - Limits and continuity; Derivatives; Techniques of differentiation; Mean value Theorem; Higher derivatives; Maxima and minima; Curve sketching.
3. **Integral Calculus**
 - Definite and indefinite integrals; Fundamental Theorem of Calculus; Techniques of integration; Taylor’s Theorem; Applications in geometry, physics and engineering.

Teaching and Learning Approach:
The lectures aim to provide the students with an integrated knowledge required for the understanding and application of mathematical concepts and techniques. To develop students’ ability for logical thinking and effective communication, tutorial and presentation sessions will be held.

Method of Assessment:
Continuous Assessment: 40%
Examination: 60%

To ensure that students learn and reflect continuously, Continuous Assessment is an important element and students are required to obtain Grade D or above in both the Continuous Assessment and the Examination components. The continuous assessment comprises of assignments, in-class quizzes and tests. The assignments are used to assist the students to reflect and review on their progress. The end-of-semester examination is used to assess the knowledge acquired by the students and their ability to apply and extend such knowledge.
Reference List:

Subject Title: Foundation Mathematics II for Science and Engineering

Subject Code: AMA104

Number of Credits: 3

Hours Assigned: Lecture 28 hours, Tutorial and Student Presentation 14 hours

Pre-requisite: Foundation Mathematics I for Science and Engineering (AMA103)

Co-requisite: nil

Exclusion: nil

Objectives:
This is a subject to provide students with a solid foundation in Mathematics and Statistics. It aims to prepare the students for studying an undergraduate programme in Engineering or Science. The emphasis will be on application of mathematical methods to solving basic engineering science problems.

Learning Outcomes:
On successful completion of this subject, students are expected to be able to:

1. understand the concepts of convergence and divergence of series and to apply Taylor’s expansions in solving numerical problems;
2. use the methods in matrices and linear equations in problem solving;
3. apply the techniques of statistics to model and solve problems in science and engineering;
4. undertake continuous learning.

Keyword Syllabus:

1. Infinite Series
 Convergence of series, including tests for convergence; power series; Taylor expansions of functions; applications.

2. Linear Algebra
 Matrices and determinants; Systems of linear equations.

3. Probability and Statistics:
 Descriptive statistics; Frequency distribution; Mean, median and mode; Variance and standard deviation; Probability; Discrete and continuous random variables; Normal distribution; Sampling; Hypotheses testing and estimations.

Teaching and Learning Approach:
The lectures aim to provide the students with an integrated knowledge required for the understanding and application of mathematical concepts and techniques. To develop students’ ability for logical thinking and effective communication, tutorial and presentation sessions will be held.

Method of Assessment:
Continuous Assessment: 40% Examination: 60%

To ensure that students learn and reflect continuously, Continuous Assessment is an important element and students are required to obtain Grade D or above in both the Continuous Assessment and the Examination components. The continuous assessment comprises of assignments, in-class quizzes and tests. The assignments are used to assist the students to reflect and review on their progress. The end-of-semester examination is used to assess the knowledge acquired by the students and their ability to apply and extend such knowledge.
Reference List:

SUBJECT DESCRIPTION FORM

<table>
<thead>
<tr>
<th>Subject Title:</th>
<th>Logic: Qualitative and Quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Code:</td>
<td>AMA105</td>
</tr>
<tr>
<td>Number of Credits:</td>
<td>3</td>
</tr>
<tr>
<td>Hours Assigned:</td>
<td>Lecture 28 hours</td>
</tr>
<tr>
<td></td>
<td>Tutorial 14 hours</td>
</tr>
</tbody>
</table>

| Pre-requisite: | nil | Co-requisite: | nil | Exclusion: | nil |

Objectives:
This subject aims to develop students’ ability in logical and analytical thinking through the qualitative and quantitative aspects of logic. Introduction to the key concepts and relationships of formal logic will be done primarily through lectures. Examples and case studies will be presented in small group tutorials. Finally, self-study will be encouraged through student accessible computer-based exercises. Assessment will be in the form of both in-class mid-term tests as well as group projects associated with tutorials.

The first part will emphasize qualitative logic and will be taught by the General Education Centre. The second part will emphasize quantitative logic. Some topics from discrete mathematics will be presented as illustrations of the general theory. This part will be taught by the Department of Applied Mathematics.

Learning Outcomes:
On successful completion of this subject, students are expected to be able to demonstrate some ability to:

1. demonstrate basic logical reasoning.
2. see the relationship between formal logic and natural language.
3. apply logical reasoning in both everyday and academic situations.
4. recognize and refute common logical fallacies.
5. appreciate the axiomatic approach in mathematics.
6. understand why proofs of mathematical statements work
7. apply logical reasoning in problem solving.

Keyword Syllabus:

1. **Qualitative Logic:**

2. **Quantitative Logic:**
 - Sets and propositions; Permutations and combinations; Relations and Functions; Graphs and Trees; Natural Numbers.

Method of Assessment:
Continuous Assessment: 40% Examination: 60%

To ensure that students learn and reflect continuously, Continuous Assessment is an important element and students are required to obtain Grade D or above in both the Continuous Assessment and the Examination components. The continuous assessment comprises of assignments, in-class quizzes and tests. The assignments are used to assist the students to reflect and review on their progress. The end-of-semester examination is used to assess the knowledge acquired by the students and their ability to apply and extend such knowledge.
Reference List:

SUBJECT DESCRIPTION FORM

Subject Title: College Physics I
Subject Code: AP101
Number of Credits: 3

Hours Assigned:
Classroom teaching and laboratory experiments
Lecture 34 hours
Laboratory 8 hours

Multimedia teaching/learning and other activities
Virtual Laboratory 12 hours
Self-study 60 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
This is the first bridging course in physics of the Foundation Programme for students admitted from mainland. It provides a broad foundation in mechanics and thermal physics, preparing students to study science, engineering, or related programmes.

Learning Outcomes:
On successful completion of this subject, students are expected to be able to:

1. solve simple problems in single-particle mechanics using calculus and vector;
2. solve problems on rotation of rigid body about fixed axis;
3. define simple harmonic motion and solve simple problems;
4. apply Archimedes’ principle to solve problems in hydrostatics;
5. apply Bernoulli’s equation to simple problems in fluid flow;
6. explain ideal gas laws in terms of kinetic theory;
7. apply the first law of thermodynamics to simple processes;
8. solve simple problems related to the Carnot cycle;
9. solve simple problems in travelling waves;
10. explain the formation of acoustical standing waves and beats; and
11. use Doppler’s effect to explain changes in frequency received.

Keyword Syllabus:
1. Preparation in Mathematics
 Review of algebra, geometry and trigonometry; Function and graph; Derivative; Integration; Vectors and coordinate system.

2. Mechanics
 Calculus-based kinematics, dynamics and Newton’s laws; Calculus-based Newtonian mechanics, involving the application of impulse, momentum, work and energy, etc.; Conservation law; Gravitation field; Systems of particles; Collisions; Rigid body; Rotation; Angular momentum; Oscillations and simple harmonic motion; Pendulum; Statics and elasticity; Hydrostatics and Archimedes’ principle; Bernoulli’s equation.

3. Thermal Physics
 Conduction, convection and radiation; Black body radiation and energy quantization; Ideal gas and kinetic theory; Work, heat and internal energy; First law of thermodynamics; Entropy and the second law of thermodynamics; Carnot cycle; Heat engine and refrigerators.

4. Waves
 Longitudinal and transverse waves; Travelling wave; Doppler effect; Acoustics.
Teaching and Learning Approach:
1. Lectures are given to deliver the subject outline and key physics concepts to the students. The students will also get the guidance on further reading.
2. Assignments are used to help the students gain analytical abilities through problem-solving and also to help them strengthen the concepts taught.
3. Laboratories are designed to help the students gain hands-on experience in the operation of equipment and apply their knowledge in the experiments.

Method of Assessment:
Continuous Assessment: 40% Examination: 60%

Essential Reading and CD-ROM:

Reference List:
Subject Title: College Physics II

Subject Code: AP102

Number of Credits: 3

Hours Assigned:

Classroom teaching and laboratory experiments
- Lecture: 34 hours
- Laboratory: 8 hours

Multimedia teaching/learning and other activities
- Virtual Laboratory: 12 hours
- Self-study: 60 hours

Pre-requisite: College Physics I (AP101)

Co-requisite: nil

Exclusion: nil

Objectives:

This is the second bridging course in physics of the Foundation Programme for students admitted from mainland. It is built on College Physics I and continues on topics in waves and optics, electromagnetism and modern physics, in preparing students to study science, engineering, or related programmes.

Learning Outcomes:

On successful completion of this subject, students are expected to be able to:

1. apply simple laws in optics to explain image formation;
2. explain phenomena related to the wave character of light;
3. define electrostatic field and potential;
4. use Gauss’ law in solving problems in electrostatics;
5. solve problems on interaction between current and magnetic field;
6. apply electromagnetic induction to various phenomena;
7. solve simple problems in AC circuits,
8. describe simple models of the atom and the nucleus, and
9. explain the properties of materials in relation with bonding and crystal structure.

Keyword Syllabus:

1. Waves and Optics
 Reflection and refraction; Image formation by mirrors and lenses; Compound lens; Microscope and telescope; Superposition of waves; Huygen’s principle; Interference and diffraction; Interferometers and diffraction grating; Polarization; Wave-particle duality.

2. Electromagnetism
 Charge and field; Coulomb’s law and Gauss’ law; Electrostatic field and potential difference; Capacitors and dielectric; Current and resistance; Ohm’s law; Electromotive force, potential difference and RC circuits; Magnetic force on moving charges and current; Hall effect; Biot-Savart law and Ampere’s law; Faraday’s law and Lenz’s law; Self inductance and mutual inductance; Transformers; AC circuits and applications.

3. Modern Physics
 Photons and photoelectric effects; Bohr model and hydrogen spectrum; Compton effect; Molecular bonds; Structure of solids; Mechanical properties of solids; Electric properties of solids.

Teaching and Learning Approach:

1. Lectures are given to deliver the subject outline and key physics concepts to the students. The students will also get the guidance on further reading.
2. Assignments are used to help the students gain analytical abilities through problem-solving and also to help them strengthen the concepts taught.
3. Laboratories are designed to help the students gain hands-on experience in the operation of equipment and apply their knowledge in the experiments.
Method of Assessment:
Continuous Assessment: 40% Examination: 60%

Essential Reading and CD-ROM:

Reference List:
SUBJECT DESCRIPTION FORM

Subject Title: Understanding the Hong Kong Community
Subject Code: APSS184

Number of Credits: 3
Hours Assigned:
 Lecture: 24 hours
 Seminar: 18 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
The subject aims to provide the students with an integrated knowledge required for the understanding and application of sociological concepts to understand the social and cultural development of Hong Kong.

Learning Outcomes:
On successful completion of this subject, students are expected to be able to:
1. understand and describe the historical development, social life, and cultural trajectory of colonial and post-colonial Hong Kong; and
2. analyze the social, cultural and political aspect of colonial and post-colonial Hong Kong.

Keyword Syllabus:
1. Pre-1841 Hong Kong: Wall Communities and the Form of Living.
2. Domestic Villages and the Survival Strategies.
3. 1841: The Coming of the Colonial Hong Kong.
4. The Chinese Communities.
5. Post-1950's Hong Kong: the Minimally Integrated Social and Political System.
6. The Development and the Future of Social Service in Hong Kong.
7. Modern City Life of Hong Kong: Shopping Malls
8. Residence Patterns of Hong Kong People: Public Housing and Home Ownership.
9. Landscape of Hong Kong: Disney World, Tourism and Economic Development.
10. Hong Kong’s Tomorrow.

Students will also have to participate in field visits which introduce them to various aspects of the traditional and modern social lives in Hong Kong. They are encouraged to focus on the cultural and social aspects of Hong Kong society. Appropriate sites for visit may include: Market at Yuen Long, Fanling and Sheung Shui; Tai O- a fishing Village, Central and Sheung Wan: Wan Cha; Hong Kong Museum of History and etc.

Teaching and Learning Approach:
Apart from the lectures, students would participate in outings by which they are introduced to, on the one hand, the historic sites that could exhibit the traditional social lives of Hong Kong people, and on the other the modern landscapes of Hong Kong. In addition, students are required to attend seminars and present their views on various aspects of the traditional and modern social lives in Hong Kong. Students are encouraged to focus on the cultural and social aspects of Hong Kong society.

Method of Assessment:
Continuous Assessment: 100%
1. 30% - Individual term paper on social/cultural life of HK
2. 40% - Participation (lecture/seminar/fieldtrip)
3. 30% - Group presentation
Reference List:

SUBJECT DESCRIPTION FORM

Subject Title: Discovering Psychology
Subject Code: APSS185
Number of Credits: 3
Hours Assigned: Lecture 28 hours
Seminar 14 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
To enable students to:
1. acquire foundational understanding of major psychological theories and their relations to everyday life; and
2. clarify myths and facts about psychology through exploring different psychological specializations.

Learning Outcomes:
On successful completion of this subject, students are expected to be able to:
1. develop clear understanding of essentials of psychology; and
2. appreciate the diverse applications of psychological concepts and research findings to real-world problems and challenges.

Keyword Syllabus:
1. Discovering Major Psychological Perspectives and Their Contributions.
2. Exploring Diversity of Psychological Specializations.
 • Biological Psychology: brain’s building, nervous system and human behaviour
 • Cognitive Psychology: snapshots of memory, thinking and creativity
 • Developmental Psychology: life-span human development (from newborn to old age)
 • Psychology of Gender and Sexuality: psychology of men and women, theories of love and interpersonal attraction
 • Personality Psychology: major personality types and assessment
 • Health Psychology: stress and coping strategies
 • Abnormal Psychology: basic perspectives of abnormality and major therapies
 • Social Psychology: social perception, attitudes, social and group influence
 • Industrial and Organizational Psychology: work motivation and leadership
 • Consumer Psychology: advertising and conditioning, consumer behavioral patterns
 • Chinese Psychology: application of psychological theories in Chinese culture

Over the past decades, psychology as an integrated discipline of social sciences, arts and science, has become increasingly popular. This subject is designed to provide students with essential psychological concepts and their applications in everyday life. Students are encouraged to explore salient and interesting features of specializations of psychology in a student-friendly format, including: an overview of major theories of psychology and their contributions, brain and human behaviour (biological psychology), snapshots of memory, thinking and creativity (cognitive psychology), life-span approach to human development (developmental psychology), psychology of gender and sexuality, major personality theories and assessment (psychology of personality), concepts of abnormality and major therapies (abnormal psychology), stress and coping (health psychology), social cognition and influence (social psychology), work motivation and styles of leadership (industrial / organizational psychology), and application of psychological theories in Chinese culture (Chinese Psychology).

Teaching and Learning Approach:
The learning and teaching approach is characterized by active experiential learning, which encourages students to master psychological concepts through interactive lectures, small group discussions, and interaction with web-assisted learning and teaching materials. This learn-by-doing focus engages students through active class participation, seminar discussion, group project, and web-assisted practice exercises/quiz.
Method of Assessment:
Continuous Assessment: 100%
1. Class and Seminar Participation (10%)
2. Quiz (30%)
3. Individual Seminar Presentation or Reflection Paper (30%)
4. Group Project Presentation and Report (30%)

Essential Reading:

Reference List:
Subject Title: Introduction to Information Technology
Subject Code: COMP100
Number of Credits: 3
Hours Assigned: Lecture 14 hours, Laboratory 42 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
This subject provides students with the basic concepts of information technology and computing, as well as knowledge and practice on deploying and controlling common information technology applications. This subject is suitable for all students as a first subject in information technology, whether they intend to continue to study information technology or not. Students who intend to study information technology-related programmes are strongly recommended to take both COMP100 and COMP111.

Learning Outcomes:
On successful completion of this subject, students are expected to be able to:

1. understand how a computer works;
2. understand the potentials of information technologies in business and industry;
3. use popular operating systems to carry out sequence of tasks;
4. appreciate the power of programmed computer operation;
5. understand the current trends in the development of popular information technologies such as the Internet and related tools; and
6. appreciate IT-related intellectual property issues and their protection.

Keyword Syllabus:
1. Introduction to Computer Systems
 Major components of computer systems: central processing units, storage devices and media, inputs / outputs; working principle of computers; contemporary types of CPU, memory, input / output devices currently in use.

2. System Software
 Functions and operations of system software; basic features and commands of MS Windows and Unix / Linux; script language and task control.

3. Communication, Multimedia and the Internet
 Communication and networking; Internet resources and tools; multimedia information creation and application.

4. IT Applications
 Introduce typical applications of information technologies such as office automation, knowledge management, education, entertainment, digital edutainment, manufacturing, geo-informatics, bio-informatics, etc.

5. Inside IT Applications
 Role of programming in IT applications, e.g. shell programs, macros in Excel, robotic control, concept of algorithm and programming, debugging.

6. IT Intellectual Property
 Security, privacy and ethics with software; copyright and patent law; trade secrets and registered design.

Teaching and Learning Approach:
The course material will be delivered as a combination of mass lectures and small group supervised laboratory sessions. Students will get familiarized with common operating systems and environment, internet and multimedia tools. They will also attempt to use basic office automation tools such as word processing, spreadsheet, and simple database operations.
Method of Assessment:

Coursework: 100%

Reference List:

SUBJECT DESCRIPTION FORM

Subject Title: Enterprise Information Technology
Subject Code: COMP102
Number of Credits: 3
Hours Assigned: Lecture 28 hours
Tutorial/Laboratory 14 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
This subject provides students with the concept of information systems and their role in today’s enterprises. This subject can be taken with or without having taken COMP100 as a pre-requisite. It is suitable for all students.

Learning Outcomes:
On successful completion of this subject, students are expected to be able to:

1. understand the use of information systems at various organizational levels;
2. understand the basic principles of the modelling, storage, retrieval and management of information in an enterprise;
3. appreciate the use of strategic information systems for competitive advantages; and
4. understand ethical and social implications of information systems.

Keyword Syllabus:
1. Basic Principles of Databases
 Data, information and knowledge; modelling and storage of information in databases; querying and retrieval of data; transaction processing.
2. More Advanced Manipulation and Management of Information
 The principles and applications of data warehousing, data mining, and knowledge management in an enterprise.
3. Decision Support for Business Intelligence
 Decision and executive support systems; business intelligence technologies such as expert systems, genetic algorithms for organizational modelling, neural networks and fuzzy logic for business applications; hands-on experience in using tools such as SPSS, data mining tool, neural network engine.
4. Electronic Commerce/Business
 Business use of the Internet, world wide web, intranets and extranets; electronic banking; cyber trading and investing; marketing on the internet; smart card trends, development methods and tools; security and cryptography.
5. Networked Enterprise
 Managing cooperative work environments; workflow and business process engineering; groupware and platforms for collaborative work, e.g. Novell.
6. Knowledge Management Concepts
 Corporate memory, intellectual capital, personal knowledge management, knowledge transfer, business intelligence.

Teaching and Learning Approach:
Lectures for delivery of conceptual knowledge and analytical techniques in case studies. Tutorials/Laboratories for discussion of real business cases and hands-on experience of tools and databases.

Method of Assessment:
Coursework: 60% Examination: 40%
Reference List:

SUBJECT DESCRIPTION FORM

Subject Title: Information Technology Systems
Subject Code: COMP111

Number of Credits: 3
Hours Assigned: Lecture 28 hours
Laboratory 28 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
This subject provides the students with the foundations of information systems, and basic methods of problem-solving with computer-based tools. It can be taken with or without having taken COMP100. Students who intend to study information technology-related programmes are strongly recommended to take both COMP100 and COMP111.

Learning Outcomes:
On successful completion of this subject, students are expected to be able to:

1. understand underlying principles of computer organization;
2. solve simple problems with computer-based tools involving programming, algorithms and other technologies; and
3. be able to control and be aware of the opportunities and limitations provided by ready-made tools and software.

Keyword Syllabus:

1. Fundamental Concepts
 Computer logic and organization, binary number representation and manipulation, modern computer architectures and trends, computer cluster, supercomputer, the computational grid.

2. System Software
 Operating system concepts, basic software development methods and tools, programming language, compiler, project management (Unix make file), debugger.

3. Basic Programming
 Basic C programming, simple data types, expression, control structure, structured data types, I/O, files.

4. Basic Algorithm and Problem Solving
 Problem solving procedure and tool, flowchart, pseudo-code, simple algorithms like linear search and bubble sort, implication on program execution time.

5. Data Communication, the Internet, and the World Wide Web
 Networking concepts; TCP/IP and Novell; features of Internet and Internet address, mobile computing.

6. Problem Solving with Computer-based Tools
 Integration of different computer-based technologies such as system software, application software, databases, networking, and mobile technologies to solve real-world problems.

Teaching and Learning Approach:
Lectures for delivery of conceptual knowledge and problem solving techniques. Tutorials/Laboratory for discussions, hands-on programming and implementation of solutions.

Method of Assessment:
Coursework: 60%
Examination: 40%
Reference List:

SUBJECT DESCRIPTION FORM

Subject Title: Extended Writing Skills Subject Code: ELC1003
Number of Credits: 3 Hours Assigned: Seminars 42 hours

Pre-requisite: English for University Studies I (ELC1004) Co-requisite: nil Exclusion: nil

Objectives:
This subject aims to further develop students’ competence in written communication in academic contexts and to enhance their ability to communicate effectively in an English-medium learning environment.

In striving to achieve the two interrelated objectives, attention will be given to developing confidence and competence in the use of grammar, vocabulary and academic writing conventions.

Learning Outcomes:
By the end of the subject, students should be able to communicate effectively in an English medium university contexts through

1. organising, writing and revising project reports,
2. discussing issues in written texts such as editorials, and
3. organising and writing correspondence to request assistance for study-related work.

To achieve the above outcomes, students are expected to use language and text structure appropriate to the context, select information critically, and present and support stance and opinion.

Content:
The content is indicative. The balance of the components, and the corresponding weighting, will be based on the specific needs of the students.

1. Appropriateness and accuracy of vocabulary and grammar
 Collocation and connotation of words; verb forms, prepositions and complex sentences.

2. Coherence and cohesion in writing
 Paragraph development; topicalisation and thematisation; cohesive devices including articles, determiners, connectives, pronouns and anaphoric references.

3. Logical development in writing
 Organisation in a variety of text types; selection of information; logical development of themes and topics.

4. Language development and independent learning strategies
 Self-access study tools such as online dictionaries, thesauruses and web concordancers to enhance language proficiency and develop vocabulary; independent language learning strategies such as the use of learning portfolios.

Teaching and Learning Approach:
The subject is designed to introduce students to the use of grammar and vocabulary in writing a variety of text types. Activities to further develop speaking and listening skills will be integrated into the interactive and project-based work throughout the course.

The study method by which the content is delivered is primarily seminar-based. Interactive learning techniques will be employed in activities such as discussions, role-plays and individual and group activities. Information technology will be employed to facilitate the learning and application of writing skills and online writing tools. Students will be referred to information on the Internet and the ELC’s Centre for Independent Language Learning.
Learning materials developed by the English Language Centre are used throughout this course. Additional reference materials will be recommended as required.

Method of Assessment:

Continuous Assessment: 100%

Students’ writing skills are evaluated through assessment tasks related to the learning outcomes. Students are assessed on the accuracy and the appropriacy of the language used in fulfilling the assessment tasks, as well as the selection and organisation of ideas.

Indicative references:

SUBJECT DESCRIPTION FORM

Subject Title: English for University Studies I
Subject Code: ELC1004

Number of Credits: 3
Hours Assigned: Seminars 42 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
This subject aims to help students study effectively in an English-medium learning environment and to enhance their proficiency in English.

In striving to achieve the two interrelated objectives, attention will be given to enhancing confidence and competence in grammar, vocabulary and pronunciation.

Learning Outcomes:
By the end of the subject, students should be able to communicate effectively in an English medium university contexts through
1. delivering effective oral presentations,
2. summarising and paraphrasing materials from written and spoken sources, and
3. planning, writing and revising expository essays.

Content:
The content is indicative. The balance of the components, and the corresponding weighting, will be based on the specific needs of the students.

1. Spoken communication
 Developing and practising specific oral skills required to prepare and deliver effective oral presentations; developing awareness of interpersonal communication strategies in different social and cultural contexts.

2. Written communication
 Analysing and practising common writing functions; improving abilities of writing topic sentences and strategies for paragraph development; understanding common patterns of organisation in writing; taking notes from written and spoken sources; introducing summarising skills; improving coherence and cohesion in writing; developing revision and proofreading skills.

3. Reading and listening
 Understanding the content and structure of information delivered orally and in print; reading and listening for different purposes.

4. Language development
 Developing relevant grammar, vocabulary and pronunciation skills.

Teaching and Learning Approach:
The subject is designed to enable students to use English effectively in the contexts they will encounter in their university studies. The main emphasis is on improving students’ confidence and competence in grammar, vocabulary and pronunciation in these contexts.

The study method is primarily seminar-based. Activities will include discussions, role-plays and individual and group activities. Students will be referred to information on the Internet and the ELC’s Centre for Independent Language Learning.

Learning materials developed by the English Language Centre are used throughout this course. Additional reference materials will be recommended as required.
Method of Assessment:
Continuous Assessment: 100%

Students’ oral and writing skills are evaluated through assessment tasks related to the learning outcomes. Students are assessed on the accuracy and the appropriacy of the language used in fulfilling the assessment tasks, as well as the selection and organisation of ideas.

Indicative references:
SUBJECT DESCRIPTION FORM

Subject Title: English for University Studies II
Subject Code: ELC1005
Number of Credits: 3
Hours Assigned: Seminar 42 hours

Pre-requisite: English for University Studies I (ELC1004)
Co-requisite: nil
Exclusion: nil

Objectives:
This subject aims to further enhance the written and spoken English communication skills that students will need to function effectively in their university studies.

Learning Outcomes:
By the end of the subject, students should be able to communicate effectively in an English medium university contexts through

1. participating effectively in group discussions,
2. organising and composing descriptive writing, and
3. planning and writing argumentative essays.

Content:
The content is indicative. The balance of the components, and the corresponding weighting, will be based on the specific needs of the students.

1. Spoken communication
 Enhancing and practising specific oral and aural skills required to participate effectively in formal interactions involving such activities as discussions and debates, as well as in a variety of informal contexts.

2. Written communication
 Writing descriptive texts; understanding and using common organisational patterns of argumentative essays; improving coherence and cohesion in writing; reinforcing revision and proofreading skills; achieving appropriate tone and style in writing.

3. Reading and listening
 Understanding the content and structure of information delivered orally and in print; reading and listening for different purposes.

4. Language development
 Developing relevant grammar, vocabulary and pronunciation skills.

Teaching and Learning Approach:
The subject is designed to further enhance the written and spoken English communication skills that students will need to function effectively in their university studies. The main emphasis is on improving students' confidence and competence in writing essays and participating in discussions.

The study method is primarily seminar-based. Activities will include discussions, role-plays and individual and group activities. Students will be referred to information on the Internet and the ELC's Centre for Independent Language Learning.

Learning materials developed by the English Language Centre are used throughout this course. Additional reference materials will be recommended as required.
Method of Assessment:

Continuous Assessment: 100%

Students’ oral and writing skills are evaluated through assessment tasks related to the learning outcomes. Students are assessed on the accuracy and the appropriacy of the language used in fulfilling the assessment tasks, as well as the selection and organisation of ideas.

Indicative references:

SUBJECT DESCRIPTION FORM

Subject Title: Foundation Year Seminar I

Subject Code: ENG1001

Number of Credits: 1

Hours Assigned: Seminars 8 hours
Visits 6 hours

Pre-requisite: nil

Co-requisite: nil

Exclusion: nil

Objectives:
The subject is to enable students to have a foretaste of the discipline-specific or related study and to provide opportunities for more interaction with the Faculty members, through which students would also be helped to cultivate a sense of belonging to their parent faculty and departments and to build up a correct learning attitude in the University.

Learning Outcomes:
On completion of the subject, students will

1. have a better understanding of their discipline, parent Faculty and Departments;
2. develop a sense of belonging to their parent Faculty and Departments; and
3. familiarise with the issues in effective learning.

Seminar Topics:

Typical Topics of the Seminars

1. Enhancing study habits as independent learners
2. Introduction and development of computing science and its related disciplines
3. Introduction and development of electronic and information engineering and its related disciplines
4. Introduction and development of electrical engineering and its related disciplines
5. Introduction and development of industrial and systems engineering and its related disciplines
6. Introduction and development of mechanical engineering and its related disciplines

Three of the five topics (2) – (6) will be covered in this subject.

Teaching and Learning Approach:
This subject consists of four seminars and three laboratory visits delivered by three Engineering Departments of the Faculty and SAO. Each of the three Departments will offer one seminar and one laboratory visit, and SAO will be responsible for one seminar.

Method of Assessment:
Continuous Assessment: 100%

The subject is assessed on a pass/fail basis, and method of assessment involves a Personal Log Book and a Reflective Essay.
SUBJECT DESCRIPTION FORM

Subject Title: Foundation Year Seminar II

Subject Code: ENG1002

Number of Credits: 1

Hours Assigned:
- Seminars 6 hours
- Visits 6 hours
- Program Specific Activity 2 hours

Pre-requisite: nil

Co-requisite: nil

Exclusion: nil

Objectives:
The subject is to enable students to have a foretaste of the discipline-specific or related study and to provide opportunities for more interaction with the Faculty members, through which students would also be helped to cultivate a sense of belonging to their parent faculty and departments and to build up a correct learning attitude in the University.

Learning Outcomes:
On completion of the subject, students will

1. have a better understanding of their discipline, parent Faculty and Departments;
2. develop a sense of belonging to their parent Faculty and Departments; and
3. familiarise with the issues in effective team work.

Seminar Topics:

Typical Topics of the Seminars

1. Building effective teams in learning
2. Introduction and development of computing science and its related disciplines
3. Introduction and development of electronic and information engineering and its related disciplines
4. Introduction and development of electrical engineering and its related disciplines
5. Introduction and development of industrial and systems engineering and its related disciplines
6. Introduction and development of mechanical engineering and its related disciplines

Two of the five topics (2) – (6) will be covered in this subject.

Teaching and Learning Approach:

This subject consists of three seminars, two laboratory visits, one visit to the Industrial Centre and one program specific activity. SAO will conduct one seminar, and two Engineering Departments of the Faculty will be responsible for two seminars and two laboratory visits. In addition to a visit to the Industrial Centre, a program specific activity will be arranged to let the students have further understanding of their own department. Typical activity includes a gathering to provide students opportunities to meet senior students of their own programmes.

Method of Assessment:

Continuous Assessment: 100%

The subject is assessed on a pass/fail basis, and method of assessment involves a Personal Log Book and a Reflective Essay.
SUBJECT DESCRIPTION FORM

Subject Title: Mathematics I
Subject Code: AMA227
Number of Credits: 3
Hours Assigned: Lecture 28 hours
Tutorial and Student Presentation 14 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
The subject aims to introduce the students to some fundamental knowledge engineering mathematics. The emphasis will be on application of mathematical methods to solving practical engineering problems.

Learning Outcomes:
The subject aims to introduce the students to some fundamental knowledge engineering mathematics. The emphasis will be on application of mathematical methods to solving practical engineering problems.

Upon satisfactory completion of the subject, students are expected to be able to:
1. apply mathematical reasoning to analyse essential features of different engineering problems;
2. apply appropriate mathematical techniques to model and solve problems in engineering;
3. develop and extrapolate mathematical concepts in synthesizing and solving new problems;
4. search for useful information in solving problems;
5. undertake continuous learning.

Syllabus:
1. Algebra of Complex Number
 Complex numbers; Geometric representation; n-th roots of complex numbers.
2. Linear Algebra
 Matrices and determinants; Vector space; Elementary algebra of matrices; Eigenvalues and eigenvectors; Normalization and orthogonality.
3. Calculus of One Variable
 Elementary functions; Fundamental Theorem of Calculus; Techniques of integration.
4. Fourier Series and Fourier Transform
 Fourier series expansion of a periodic function; Half-range expansions; Basic properties of Fourier transform; Simple applications.

Teaching and Learning Approach:
The lectures aim to provide the students with an integrated knowledge required for the understanding and application of mathematical concepts and techniques. To develop students’ ability for logical thinking and effective communication, tutorial and presentation sessions will be held.

Method of Assessment:
Continuous Assessment: 40% Examination: 60%
To ensure that students learn and reflect continuously, Continuous Assessment is an important element and students are required to obtain Grade D or above in both the Continuous Assessment and the Examination components. The continuous assessment comprises of assignments, in-class quizzes and tests. The assignments are used to assist the students to reflect and review on their progress. The end-of-semester examination is used to assess the knowledge acquired by the students and their ability to apply and extend such knowledge.
Textbooks and Reference Books:

Mathematics II

Subject Title: Mathematics II
Subject Code: AMA228
Number of Credits: 3
Hours Assigned: Lecture 28 hours
Tutorial and Student Presentation 14 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
This subject aims to provide students with some basic probabilistic and statistical concepts and methods. The emphasis will be on application of statistical methods to solving practical problems.

Learning Outcomes:
This subject aims to provide students with some basic probabilistic and statistical concepts and methods. The emphasis will be on application of statistical methods to solving practical problems.

Upon satisfactory completion of the subject, students are expected to be able to:

1. apply mathematical reasoning to analyse essential features of different problems in engineering;
2. develop and extrapolate statistical concepts in synthesizing and solving new problem;
3. search for useful information and use statistical packages in solving statistical problems;
4. think critically about the uses and limitations of various statistical methods for solving problems in commerce and industry;
5. undertake continuous learning.

Syllabus:
1. Ordinary Differential Equations
 First and second order linear ordinary differential equations; Laplace transform; Convolution theorem.
2. Descriptive Statistics
 Categorical and Numerical data; Frequency distributions; Mean, mode and median; Range and quartile; Standard Deviation.
3. Probability
 Rules of sums and products; Combinatorial probability; Independence and mutual exclusion; Bayes’ theorem.
4. Random Variables
 Discrete and continuous random variables; Binomial, Poisson, Exponential and Normal distributions; Law of large numbers; The Central Limit Theorem.
5. Markov Process
 Recursions and Markov chains; Applications to queuing theory.

Teaching and Learning Approach:
The lectures aim to provide the students with an integrated knowledge required for the understanding and application of mathematical concepts and techniques. To develop students’ ability for logical thinking and effective communication, tutorial and presentation sessions will be held.
Method of Assessment:
Continuous Assessment: 40% Examination: 60%

To ensure that students learn and reflect continuously, Continuous Assessment is an important element and students are required to obtain Grade D or above in both the Continuous Assessment and the Examination components. The continuous assessment comprises of assignments, in-class quizzes and tests. The assignments are used to assist the students to reflect and review on their progress. The end-of-semester examination is used to assess the knowledge acquired by the students and their ability to apply and extend such knowledge.

Textbooks and Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: Elementary Cantonese 基礎粵語
Subject Code: CBS2050

Number of Credits: 3
Hours Assigned: 每週 4 小時（共 10.5 週）

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
本課程旨在幫助國內學生在短期內學會日常生活所需使用的香港廣州話，並且通過粵語的學習，幫助他們了解香港文化，認識香港社會。

Learning Outcomes:
1. 幫助學員掌握香港粵語的語音、詞匯和語法的基本特點；
2. 幫助學員以粵語進行日常交際；
3. 通過學習粵語使學員了解香港社會文化並認識香港方言字。

Keyword Syllabus:

第一單元 簡介香港粵語的特點
粵語的拼音方案、粵語的語音

第二單元 介紹
重點學習：常見姓氏
“先”字的句式

第三單元 問侯
重點學習：香港人常用的問侯方式
比較格式

第四單元 打電話
重點學習：香港人電話交談的方式雙賓語句式

第五單元 約會
重點學習：簡單式語氣助詞

第六單元 問題
重點學習：方位表達法

第七單元 購物
重點學習：算錢的方式

第八單元 交通
重點學習：粵語“定”的動補結構式

第九單元 天氣
重點學習：天氣的表達

第十單元 飲食
重點學習：“之嘛”等複合式語氣助詞

第十一單元 購房
重點學習：將字句

第十二單元 買餸
重點學習：單音節形容詞的重疊式

第十三單元 看醫生
重點學習：實用的表達方式

第十四單元 工作──捲工跳槽
重點學習：表達同情的方式

第十五單元 購物
重點學習：表達可能的方式

第十六單元 旅遊──海洋公園
重點學習：囑咐的表達方式

第十七單元 電視文化
重點學習：實用的表達方式
Teaching and Learning Approach:

本課程採取情境教學法，共有十八個單元，讓學生在模擬的情境中對話，自然地學習語言。本課程也著重講解在每個情境中所使用的粵語各個成分，包括語音、詞匯和語法，讓學生全面地和更有效地掌握香港粵語，以進行基本的語言交際，包括課堂上的一般討論。

Method of Assessment:

課堂表現：10%
測試：
一. 課堂練習測驗：20%
二. 個人短講：30%
三. 期末小組口頭報告：40%

Essential Reading:

1. 鄭定歐等編，《粵語香港話教程》，三聯書店出版, 2003年10月。

Reference List:

1. 高華年,《廣州方言研究》, 商務印書館, 1984年1月。
2. 李新龍等,《廣州方言研究》, 廣東人民出版社, 1995年6月。
3. 歐陽覺亞,《普通話廣州話的比較與學習》, 中國社會科學出版社, 1996年9月。
4. 饒秉才等,《廣州話方言詞典》, 商務印書館, 1996年11月。
5. 《廣州音字典》,（普通話對照）, 三聯書店（香港）有限公司, 1996年4月。
6. 曾子凡,《廣州話、普通話口語詞對譯手冊》, 三聯書局, 1994年5月。
7. 張洪年,《香港粵語語法的研究》, 香港中文大學, 1972年10月。
SUBJECT DESCRIPTION FORM

Subject Title: Chinese for Electronic and Information Engineering
Subject Code: CBS2065
Number of Credits: 2
Hours Assigned: 28 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Role and Purpose:
This subject aims to equip the students of EIE with competence in written Chinese and Putonghua to cope with the increasing professional interactions between Chinese mainland and Hong Kong. The training will enhance the students’ abilities in (1) writing Chinese official letters, notice, email for communication / negotiation, (2) reading document such as report, articles and to familiarize with Chinese terminology of the profession; and (3) writing professional report, proposal.

Learning Outcomes:
On successfully completing the subject, students will be able to:

Category A: Professional/academic knowledge and skills
1. master the functions, formats and styles of various Chinese practical writing for formal communication and other purposes in professional settings,
2. be familiarized with the style and the terminology of the profession in reading professional articles, reports and other documents,
3. produce professional documents such as report, proposal, guidelines/manuals.

Category B: Attributes for all-roundedness
4. develop the confidence in writing Chinese genres / documents for official communication and professional interaction;
5. develop the competence of choosing suitable styles and strategies of expression for the intended functions through Chinese writing.

Indicative Content:
1. Practical Chinese writing for effective communication (12 hrs)
 - official letters
 - internal memos
 - press releases
 - web writing
 - direct-mail packages

2. Reading of professional documents and terminology (4 hrs)
 - glossary of terminology (English vs Chinese)
 - articles
 - reports

3. Writing of professional documents (12 hrs)
 - report
 - proposal
 - manual / guideline

Forms of learning and teaching:
This subject will mainly be in the form of lectures interspersed with small group discussions. By using working examples, a tight link between theoretical input and practical applications will be made. Students are required to work individually and in small groups to develop their language and analytical skills.
Method of Assessment:
100% of the assessment for this subject is based on coursework in terms of both subject knowledge and writing skills in professional contexts, among which 60% will be based on 3 written assignments which evaluate students’ written expression and 40% will be based on a group project on project activity. The group project will also include an end-of-semester oral presentation.

Reading List:
1. 司有和，（科技写作简明教程），安徽教育出版社，1984。
2. 香港貿易發展局中文事務組編，（中國貿易應用文），香港三聯書店，1994。
3. 于成鲲，（現代應用文），復旦大學出版社，1996。
4. 陳瑞端著，（生活錯別字），中華書局，2000。
5. 邢福義 汪國勝 主編，（現代漢語），華中師範大學出版社，2003。
SUBJECT DESCRIPTION FORM

Subject Title: Electronics Design Subject Code: EIE210
Number of Credits: 3 Hours Assigned: Lecture/Tutorial 39 hours
 Laboratory 3 hours
 (Equivalent to 9 laboratory hours)

Pre-requisite: Introduction to Electronics and Multimedia Technologies (EIE225) Co-requisite: nil
Exclusion: nil

Objectives:
To provide a broad treatment of the fundamentals of electronics design, with emphasis of multimedia technologies.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the fundamentals of electronic systems and the associated technologies.
2. Solve problems and design simple electronics systems related to multimedia technologies.
3. Apply theory to practice by doing laboratory experiments on important electronics techniques.
4. Appreciate the importance of creativity and critical thinking in the creation of ubiquitous electronics systems in a modern society, and to realize that there is no unique solution for any particular situation and that engineers have to find "optimum" solutions, or make optimum designs.

Category B: Attributes for all-roundedness
5. Present ideas and findings effectively.
6. Think critically.
7. Learn independently.
8. Work in a team and collaborate effectively with others.

Syllabus:
1. Introduction to electronics systems

2. Analog subsystems

3. Digital subsystems
 Operation and design of CMOS logic gates. Typical operation and design of flip-flops, registers, counters. Multi-vibrators and timers. Estimation of the speed of operation. Memory circuits: structure and operation of ROM, RAM.

Laboratory Experiments:
1. Active analog filters
2. Power amplifiers
3. Voltage regulators

Case Study: Composite video signals
Method of Assessment:
Continuous Assessment: 40% Examination: 60%

The continuous assessment will consist of a number of assignments, and two tests.

Textbooks:

Reference books:
SUBJECT DESCRIPTION FORM

Subject Title: Introduction to Logic Design
Subject Code: EIE214
Number of Credits: 3
Hours Assigned: Lecture/tutorial 37 hours
Laboratory 5 hours
(Equivalent to 15 laboratory hours)

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
To provide students with a broad view in hardware aspects of digital logic systems and enable them to have better understanding and knowledge that can be applied in later digital design related courses.

Emphasis will be placed on the following topics:
1. Common binary logic components
2. Sequential circuits
3. Structure and organization of digital logic system
4. Usage and applications of programmable logic devices

Student Learning Outcomes:
After completing the subject, the students will be able to have:

1. An ability to apply the fundamental knowledge of digital systems and associated technologies appropriate to the degree discipline
2. An ability to design and conduct experiments for simple logic components
3. An ability to design a digital system to meet realistic specification
4. An ability to aware different design issues of digital system
5. An ability to use the EDA tools for digital design
6. An ability to present their ideas and observation effectively
7. An ability to work in a team and collaborate effectively with others

Syllabus:

1. Number Systems, Operations, and Codes and Logic Circuits
 1.1 Binary, octal and hexadecimal numbers; base conversions
 1.2 1’s complement, 2’s complement and binary arithmetic
 1.3 Binary-coded-decimal (BCD) representation
 1.4 Fundamentals of Boolean algebra (DeMorgan’s theorem)
 1.5 Electronic logic gates (NOT, AND, OR, NAND, NOR, XOR and XNOR)
 1.6 Circuit simplification (Karnaugh Maps)

2. Combinational Circuits
 2.1 Decoders and encoders
 2.2 Multiplexers and de-multiplexers
 2.3 Binary adders, binary adder-subtractors
 2.4 HDL representations of combinational circuits

3. Sequential Circuits
 3.1 Latches
 3.2 Master-slave flip-flops, edge-triggered flip-flops (SR, D, JK, T)
 3.3 Flip-flop timing
 3.4 HDL representations of sequential circuits
4. Counters
 4.1 Asynchronous counters and synchronous counters
 4.2 Up-down counters
 4.3 Counters with arbitrary sequence
 4.4 Design procedure of counters
 4.5 Circuit representations of counters
 4.6 HDL representations of counters

5. Digital Sequential Systems
 5.1 Asynchronous reset and synchronous reset
 5.2 Design procedure of sequential systems (state table and state diagram)
 5.3 Finite state machine (Mealy model and Moore model)
 5.4 Timing characteristics of sequential systems
 5.5 Circuit representations of sequential systems
 5.6 Case Study: Sequential number recognizer and traffic light

6. Memory and Register
 6.1 RAM: Write and read operations, timing waveforms, RAM integrated circuits, three-state
 buffers, DRAM ICs
 6.2 Memory organization
 6.3 Register design and register transfer structure

7. Micro-operations in Microprocessors
 7.1 Serial arithmetic operations
 7.2 Shift operations
 7.3 Shift and add multiplier

Laboratory Experiment:
1. Basic logic gates and their applications
2. Programmable logic devices with HDL

Method of Assessment:
Continuous Assessment: 50% Examination: 50%

The continuous assessment will consist of a number of assignments, laboratory exercises and two tests.

Textbook:

Reference Books:
2. V. P. Nelson, H. T. Nagle, B. D. Carroll and J. D. Irwin, Digital Logic Circuit Analysis & Design,
SUBJECT DESCRIPTION FORM

Subject Title: Introduction to Electronics and Multimedia Technologies
Subject Code: EIE225
Number of Credits: 3
Hours Assigned: Lecture/Tutorial 33 hours
Laboratory 9 hours

Pre-requisite: nil
Exclusion: Basic Electricity and Electronics I (ENG237)
Co-requisite: nil

Objectives:
Introduce the fundamental concepts and theory of (i) electronics principles & components and (ii) multimedia technologies. Develop ability for solving problems involving electronics circuits and multimedia technologies. Provide experimentation on electronics and multimedia systems.

Student Learning Outcomes:
Professional/academic knowledge and skills
Upon completion of this course, students are expected to be able
1. To understand the underlying basic theory of analogue & digital electronics and multimedia technologies,
2. To understand the basic building blocks of electronics & multimedia systems,
3. To conduct experiments in basic electronics and multimedia systems,
4. To appreciate the applications of electronics technologies in multimedia systems.

Attributes for all-roundedness
5. To be able to learn independently.
7. To appreciate the importance of creativity and critical thinking, and to realize the impact and applications of electronics and multimedia technology.
8. Case studies allow students to develop a fuller understanding of social and community issues related to the application of electronic and multimedia systems.

Syllabus:
1. DC Circuits
 1.1 Quantities and Units
 1.2 Voltage, Current, and Resistance
 1.3 Ohm’s Law, Energy, and Power
 1.4 Series and Parallel Circuits
 1.5 Magnetism and Electromagnetism
2. AC Circuits
 2.1 Introduction to Alternating Current and Voltage
 2.2 Capacitors and RC circuits
 2.3 Inductors and RL Circuits
 2.4 RLC Circuits and Resonance
 2.5 Time Response of Reactive Circuits
 2.6 Transformers
3. Devices
 3.1 Diodes and Applications
 3.2 Transistors and Applications
 3.3 The Operational Amplifier
 3.4 Basic Op-Amp Circuits and Applications
4. Digital Circuits
 4.1 Binary Number System and Arithmetic
 4.2 Boolean Algebra
 4.3 Basic Logic Gates and Applications
5. Introduction to Multimedia Technologies
 5.1 Basics of Multimedia signals
 5.2 Digital Multimedia

6. Multimedia Authoring and Data Representation
 6.1 Multimedia Authoring and Tools
 6.2 Graphics and Image Data Representation
 6.3 Colour in Image and Video
 6.4 Fundamental Concepts in Video
 6.5 Basics of Digital Audio.

7. Multimedia Data Processing
 7.1 Data Storage
 7.2 Data Compression
 7.3 Communication and Retrieval

Laboratory Experiment:
Students are required to
1. Carry out a number of short experiments using Electronic Project Kit to appreciate the applications of
 (i) analogue electronic circuits and (ii) digital electronic circuits,
2. Appreciate the method of quantization and sampling using the audio interface on a PC with suitable
 data acquisition software
3. Appreciate the method of multimedia data storage and processing, with emphasis on image and
 video information.

Case Studies:
Detail study of a typical multimedia system and to appreciate the applications of electronic technologies
in multimedia systems.

Assessment Methods
Continuous Assessment: 40% Examination: 60%

The continuous assessment consists of a number of short quizzes, assignments, the case study,
laboratory reports and tests. The assessment criteria will be made known to the students prior to
conducting the assessment.

Textbooks:
1. Thomas L. Floyd, *Electronics Fundamentals: Circuits, Devices and Applications*, 7/e, Addison-
 Wesley, 2006.

Reference Book:
SUBJECT DESCRIPTION FORM

Subject Title: University English I

Subject Code: ELC2501

Number of Credits: 2

Hours Assigned: 28 hours

Pre-requisite: nil

Co-requisite: nil

Exclusion: nil

Objectives:
This subject aims to help students to study effectively in the University’s English medium learning environment and, more specifically, to improve and develop their English language proficiency within a framework of academic contexts.

In striving to achieve the two interrelated objectives, attention will be given to developing the core competencies the University has identified as vital to the development of effective life-long learning strategies and skills.

Learning Outcomes:
By the end of the subject, students should be able to communicate effectively in an academic context through

1. writing well-organised academic texts, such as expository essays,
2. delivering effective oral presentations, and
3. using appropriate referencing skills in academic writing and speaking.

To achieve the above outcomes, students are expected to use language and text structure appropriate to the context and to critically select relevant information to develop a theme in a text.

Content:
This syllabus is indicative. The balance of the components, and the corresponding weighting accorded to each, will be based on the specific needs of the students.

1. Written academic communication
 Identifying and employing functions common in written academic discourse; note-taking from reading and listening inputs; understanding and applying principles of academic text structure; developing paraphrasing, summarising and referencing skills; improving editing and proofreading skills; achieving appropriate tone and style in academic writing.

2. Spoken academic communication
 Recognising the purposes of, and differences between, spoken and written communication in English in academic contexts; identifying and practising the verbal and non-verbal interaction strategies in oral presentations; explaining and presenting ideas that require the development and application of logical thinking.

3. Reading and listening in academic contexts
 Understanding the content and structure of information delivered orally and in print; reading and listening for different purposes e.g. as input to tasks, and for developing specific reading or listening skills; using a dictionary to obtain lexical, phonological and orthographical information.

4. Language development
 Improving and extending relevant features of students’ grammar, vocabulary and pronunciation.

Teaching and Learning Approach:
The subject is designed to introduce students to the communication skills, both oral and written, that they may need to function effectively in academic contexts.

The study method is primarily seminar-based. Activities include teacher input as well as individual and group work involving drafting and evaluating texts, mini-presentations and discussions. Students will be referred to information on the internet and the ELC’s Centre for Independent Language Learning.
Learning materials developed by the English Language Centre are used throughout this course. Additional reference materials will be recommended as required.

Method of Assessment:

Continuous Assessment: 100%

Students’ oral and writing skills are evaluated through assessment tasks related to the learning outcomes. Students are assessed on the accuracy and the appropriacy of the language used in fulfilling the assessment tasks, as well as the selection and organisation of ideas.

Indicative references:

SUBJECT DESCRIPTION FORM

Subject Title: University English II
Subject Code: ELC2502
Number of Credits: 2
Hours Assigned: 28 hours

Pre-requisite: University English I (ELC2501)
Co-requisite: nil
Exclusion: nil

Objectives:
This subject aims to further develop those English language skills required by students to study effectively in the University’s English medium learning environment.

Learning Outcomes:
By the end of the subject, students should be able to communicate effectively in academic contexts through:
1. writing academic argumentative essays, and
2. participating actively in academic discussions.

To achieve the above outcomes, students are expected to use language and text structure appropriate to the academic context and to critically select relevant information to develop a thesis and arguments in a text.

Content:
This syllabus is indicative. The balance of the components, and the corresponding weighting, will be based on the specific needs of the students.

1. Written academic communication
 Understanding and applying principles of the text structure of persuasive and argumentative academic texts; further developing paraphrasing, summarising and referencing skills; improving editing and proofreading skills; achieving appropriate tone and style in academic writing.

2. Spoken academic communication
 Identifying and practising the verbal and non-verbal interaction strategies in academic discussions; explaining and presenting ideas that require the development and application of creative and critical thinking.

3. Reading and listening in academic contexts
 Understanding the content and structure of ideas delivered orally and in print; distinguishing between ‘fact’ and ‘opinion’.

4. Language development
 Further improving and extending relevant features of grammar, vocabulary and pronunciation.

Teaching and Learning Approach:
The subject is designed to introduce students to the communication skills, both oral and written, that they may need to function effectively in academic contexts.

The study method is primarily seminar-based. Activities include teacher input as well as individual and group work involving drafting and evaluating texts, mini-presentations and discussions. Students will be referred to information on the internet and the ELC’s Centre for Independent Language Learning.

Learning materials developed by the English Language Centre are used throughout this course. Additional reference materials will be recommended as required.
Method of Assessment:

Continuous Assessment: 100%

Students’ oral and writing skills are evaluated through assessment tasks related to the learning outcomes. Students are assessed on the accuracy and the appropriacy of the language used in fulfilling the assessment tasks, as well as the selection and organisation of ideas.

Indicative references:

SUBJECT DESCRIPTION FORM

Subject Title: Information Technology
Subject Code: ENG224
Number of Credits: 3

Hours Assigned:
Lecture/Tutorial 42 hours
Laboratory 9 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
To provide the foundation knowledge in computers, computer networks and data processing that is essential to modern information system design.

Student Learning Outcomes:

Category A: Professional/academic knowledge and skills
1. Understand the functions and features of computer hardware and software components.
2. Understand the architecture and functions of a computer operating system and be able to use the services it provided for managing computer resources.
3. Understand the basic structure of a database system and be able to set up and configure a simple database system.
4. Understand the principles of computer networks and be able to set up and configure a simple computer network.

Category B: Attributes for all-roundedness
5. Solving problems using systematic approaches.

Syllabus:

1. Introduction to computers
 Introduction to applications of information technology in different engineering disciplines. Introduction to computer hardware components: CPU, RAM, ROM, I/O devices and internal buses. Software components: applications, utilities and operating systems.
 Case study: Linux – user Interfaces, file management and process management.
 (10 hours)

2. Computer networks
 Case studies: Ethernet – cabling, topology and access methods.
 (18 hours)

3. Introduction to data processing and information systems
 Database systems – architecture, relational database concept, structural query language (SQL), database management systems, Web and database linking, database application development.
 Introduction to Information systems. Workflow management.
 Case study: Database management using Microsoft Access/MySQL.
 (14 hours)

Laboratory Experiments and other Practical Work (18 hours):
1. File management and process management in Linux
2. Setting up a Web server
3. Network Address Translation and IP Routing

Method of Assessment:
Continuous Assessment: 40% Examination: 60%

The continuous assessment consists of assignments and test.
Reference Books:

Subject Title: Computer Programming
Subject Code: ENG236
Number of Credits: 3
Hours Assigned: Lecture/Tutorial/Laboratory 42 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
1. To introduce the fundamental concepts of computer programming.
2. To equip students with sound skills in C/C++ programming language.
3. To equip students with techniques for developing structured computer programs.
4. To demonstrate the techniques for implementing engineering applications using computer programs.

Student Learning Outcomes:
Category A: Professional/academic knowledge and skills
After taking this subject, the students should be able to develop a good computer program using C/C++ programming language. To be specific, the students should be able to achieve the following:
1. Familiarize themselves with at least one C/C++ programming environment.
2. Be proficient in using the basic constructs of C/C++, such as variables and expressions, looping, arrays and pointers, to develop a computer program.
3. Be able to develop a structured and documented computer program.
4. Understand the fundamentals of object-oriented programming and be able to apply it in computer program development.
5. Be able to apply the computer programming techniques to solve practical engineering problems.

Category B: Attributes for all-roundedness
6. Solve problems by using systematic approaches.
7. Write technical reports and present the findings.
8. Learn team working skills.

Syllabus:
1. Introduction to programming
 Software components of a computer – Operating system, directories, files. Evolution of programming languages. Programming environment – Compiler, linker and loader. Building the first program – Hello World. (3 hours)
2. Bolts and Nuts of C/C++
 Preprocessor, program codes, functions, comments. Variables and constants. Expressions and statements. Operators. (3 hours)
3. Program Flow Control
 If, else, switch, case. Looping – for, while, do. Functions, parameters passing, return values. Local and global variables. Scope of variables. (4.5 hours)
4. Program Design and Debugging
5. Basic Object Oriented Programming
 Objects and classes. Encapsulation. Private versus public. Implementing class methods. Constructors and destructors. (4.5 hours)
6. Pointer and Array
7. **Stream I/O**
 Input and Output. Input using cin. Output using cout. File I/O using streams. (6 hours)

8. **Using C/C++ in Engineering Applications**
 Solving numerical problems using C/C++. Developing graphical user interfaces for Engineering applications. Control I/O devices using C/C++. (7.5 hours)

Method of Assessment:

Continuous Assessment: 100%

For this subject, students need to go through three 2-hours programming tests in which students will be asked, within the allowed time period, to develop a set of computer programs using the C/C++ programming language to solve a problem. These three tests are worth 30% of the total marks.

Students also need to go through three 1-hour written tests to demonstrate their understanding to C/C++ programs. These three tests are worth 20% of the total marks.

Besides, students need to finish a mini-project in this subject. Students are expected to spend not less than 35 hours of self-studying in order to finish the mini-project. The mini-project is worth 30% of the total marks.

The remaining 20% of marks are allotted to assignments that will be given during and after the classes.

Textbook:

Reference Book:

SUBJECT DESCRIPTION FORM

Subject Title: Practical Training
Subject Code: IC291
Number of Credits: 5
Hours Assigned: 5 weeks
(Refer to Training Pattern)

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
The objective of this course is to train student with hands-on electronic practice, multimedia electronic product prototype fabrication techniques and practical computing skill. Practical Training will be conducted in Industrial Centre (IC) of the university.

Student Learning Outcomes:

Category A: Professional/academic knowledge and skills
1. Practise and learn the basics for best practice in computer operation with client-server computing on contemporary data network for professionals in engineering and technology.
2. Practise and learn the basics of de facto scientific computing software for professionals in engineering and technology.
3. Practise and learn professional practice in printed circuit board assembly fabrication so as to enable the construction, troubleshooting and testing of simple printed circuit board assembly.
4. Practise and learn the essence of multimedia electronic product prototype fabrication techniques so as to enable the construction of simple multimedia electronic product prototype.
5. Practise and create web site for project presentation across Internet.

Category B: Attributes for all-roundedness
6. Practise technical communication skill, produce training log and report.
7. Cultivate personnel ability and attitude by working in project group under an industrial environment.
8. Understand the variation of different personalities of members within a project group, practise adaptation so as to work in harmony with other group members while focusing on the effective delivery of project commitment.
9. Nourish leadership ability and creativity in group work
10. Demonstrate critical thinking and creativeness in electronic project development and prototype fabrication under an industrial environment.

Syllabus:

1. IC 1106 - Electronic Practice for Electronic and Information Engineering (1 week)
 a. Introduction to electronics and its products, cost factors and technical aspects. Introduction to common electronic circuits and components, soldering and desoldering techniques. Introduction to surface mount techniques, choices & properties of related materials.
 b. PCB design, circuit artwork, etching process, prototype PCB fabrication. Hands on practice of PCB circuit design in EDA environment. Use of basic test instruments. Mounting and installation of electronic circuits, wiring of subassemblies.
 c. Training and practice in programming PC interface control.
 d. Training and practice in embedded device programming.

2. IC 1109 – Advanced Electronic Practice with Multimedia Application (2 weeks)
 a. Training in design modification from circuit prototype for multimedia application.
 b. Embedded device programming practice for multimedia electronic product.
 c. Multimedia electronic product prototype fabrication
 d. Testing and troubleshooting techniques in multimedia electronic product
 e. Project presentation using Internet

3. IC3003 - Basic Scientific Computing (30 hours)
 a. Approach and techniques in using the MATLAB Development Environment
 b. Mathematical Operations, matrices, linear algebra, polynomials and interpolation, data analysis and statistics, function functions, differential equations
 c. Programming, M-files programming and application examples, flow control statements, function files
d. Graphical user interface, data structures, input/output, and object-oriented capabilities

e. Graphics, data plotting, formatting, basic printing and exporting interfaces with examples in basic scientific applications, pie chart, bar chart, area chart, linear and log plots, 3D-View plot experiment with fitting curves to data

4. **IC3004 - General Computer and Network Skills (30 hours)**

a. General skills on installing software from Internet; file decompressing; general troubleshooting in PC; virus scan and cleaning; creating PDF documents, Installing, upgrading, configuring, managing and troubleshooting Microsoft Windows (contemporary version)

b. Managing access to resources, system configuring and data, files and disks management

c. Network Configuration, TCP/IP addressing, name resolution and IP routing

d. Remote access configuring and mobile computing

Training Pattern:

IC3003 Year 1 term time; IC3004 Year 1 term time or summer as elected by student; training in electronic practice in Year 1 Summer.

Teaching and Learning Approach:

The teaching and learning approach is based on practical workshop training arranged in modules and it can be broadly divided into two parts based on their contents:-

(i) Training in electronic practice will enable student to learn the requirement of practical electronic product fabrication, appreciate the fabrication process so as to create, develop and integrate their knowledge into future design. On completion of the training, student should be able to manage the fabrication of multimedia electronic product prototype for design and development.

 In module IC1106, student will learn the basics of electronic product construction practice, printed circuit assembly prototype construction skills, techniques and best practice of the electronic industry. Training activities will include tutorials, practical assignments, test and report.

 For module IC1109, students will participate in training groups under an industrial environment with an objective to produce a prototype of electronic product. The product will normally contain multimedia feature with embedded controller application. Student will develop the product under an electronic design automation environment and tackle different parts of product design so as to produce a working prototype for demonstration. Student will experience practical problems that are commonly encountered in the electronic industry during product development. Student will derive solutions to overcome difficulties, produce deliverables for the project in a given time frame. Individual merit will be assessed together with group performance. As such, the training task and activities will be organized in a way to enable a clear identification of work involved while allowing students to work independently and in groups for assessment.

Besides fabrication technologies and prototype implementation, students should be able to cultivate their personal quality, creativity, management skills and leadership in teamwork collaborations. Tutorials and inductions will be provided as require. In addition to the quality and output of the practical tasks such as PCB assembly fabrication, chassis fabrication, prototype testing and demonstration, assessment will include creativeness and a web site for product presentation on the Internet.

(ii) Computer training is delivered through a series of instructor led hands-on training courses. Students are required to complete two computer training modules that are essential to their studies in multimedia technology. Tutorials and practical assignments will be given in class so as to enable learning through practical work. Test will be conducted at the end of individual module. Computer training aims to guarantee student with an adequate level of practical computer skills for academic studies and later in their professional lives.
Method of Assessment:

Assessment is comprised of 100% continuous assessment in practical assignment, report, presentation and test. The weighting of assessment components are tabulated as follows:

<table>
<thead>
<tr>
<th>Assessment Component</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical Assignment</td>
<td>50%</td>
</tr>
<tr>
<td>Report and Presentation</td>
<td>30%</td>
</tr>
<tr>
<td>Test</td>
<td>20%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Reference books:

SUBJECT DESCRIPTION FORM

Subject Title: Management and Organisation
Subject Code: MM2021
Number of Credits: 3
Hours Assigned: Lectures 28 hours, Seminars 14 hours

Pre-requisite: nil
Co-requisite: nil

Exclusion: Introduction to Management (MM201)
Organisational Behaviour (MM211)
Organisation and Management (MM202/MM302)
People and Management (MM2191)

Role and Purpose:
This subject introduces the basic theories and concepts concerning firstly, the functions of managing a business, secondly, the study of human behaviour and its implications for the management of organisations, and thirdly, the importance of social responsibility and ethics in managing organisations. The subject will also develop students’ critical thinking and communication skills, both oral and written.

Student Learning Outcomes:
On completion of this subject, students will:

Category A: Professional/academic knowledge and skills
1. Be able to identify the nature of managerial work in a variety of forms of organisation, and assess the impact of the external environment on managers’ jobs.
2. Be able to explain and analyse the functions of management – planning, organising, leading, and controlling.
3. Understand the essence of human behaviour and be able to assess the implications for the management of organisations and businesses.
4. Be able to evaluate the arguments surrounding social responsibility and ethical behaviour in organisations and businesses, and in so doing have an enhanced awareness of the importance of such issues.

Category B: Attributes for all-roundedness
5. Have further developed their critical thinking, and oral and written communication skills.

Indicative Content

1. Managers and Management
Define the nature of managerial work taking into account the impacts of the external environment in modern society. Provide an overview of the evolution of management thoughts.

2. Management Functions
The major elements of the management functions: planning, organising, leading, and controlling, and their importance for the effective management of business organisations.

3. Planning

4. Organising an Enterprise
Review of a variety of organisational structures and the identification of the conditions under which they are appropriate. Managerial communication and information technology. Staffing and human resource management.

5. Leading
The manager’s role as a leader. Foundations of human behaviour. Leading and motivating employees – individuals and groups.

6. Controlling
7. Social Responsibility and Managerial Ethics
Arguments for and against social responsibility as a business objective. Factors affecting managerial ethics. Approaches to improving ethical behaviour.

Teaching / Learning Approach:
In the lectures the general principles of the syllabus topic will be presented and developed. In the seminars, students will develop and apply the general principles of the topic in student-centred activities.

Method of Assessment:
Coursework: 50% Final Examination: 50%
Minimum Pass Grade: Coursework (D) Final Examination (D)

Indicative Reading:
*Individual subject lecturer may prescribe different textbooks for the course.

Recommended Textbook:

References:

Current journal articles, periodicals & newspapers will also be assigned for study.
SUBJECT DESCRIPTION FORM

Subject Title: Introduction to Marketing
Subject Code: MM2711
Number of Credits: 3
HoursAssigned: Lectures 28 hours
Seminars 14 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: Marketing and the Consumer (MM2791)

Role and Purpose:
This core subject introduces the basic principles and concepts of Marketing. It provides an analytical foundation for further study of Marketing and also contributes to the Learning Outcomes for all students in two ways. First, the content directly addresses the creation of value, ethics, cultural diversity and globalization. Second, the classroom activities and assessments develop students' teamwork, ability to communicate in English, creative thinking and learning to learn.

Learning Outcomes:
On successfully completing this subject, students will be able to:

1. Understand the role and value of marketing in today's increasingly competitive, dynamic and turbulent environment.
2. Analyse market situations in different cultural / global environments, identifying marketing opportunities and threats; and understand organisations' response process to these environments.
3. Synthesise the process of marketing planning and the process of corporate planning.
4. Formulate marketing mix strategies and programmes and implement them.
5. Apply marketing theories, models, and information technology to practical marketing situations.
6. Establish the relationship between marketing & society in the context of social responsibility and marketing ethics.

Indicative Contents:

1. Fundamentals of Modern Marketing
 Marketing in the modern organization, types of marketing, overview of the marketing process, strategic marketing planning, introduction to the marketing mix, developing competitive advantages.

2. Analysing Marketing Structure and Behaviour
 Global and competitive marketing environment, consumer and organization markets and their buying behaviour.

3. Researching and Planning of Marketing Activities
 Marketing research and audit, marketing information system, marketing planning and forecasting.

4. Selecting Market Opportunities
 Market segmentation, market targeting, product positioning, pricing, promotion and placing.

5. Introduction to the Marketing Mix
 Product, Pricing, Promotion and Placing.

6. Marketing and society
 Social and Marketing ethics: marketing impacts on individual consumers, society and other businesses.

Teaching/Learning Approach:
Keynote lectures, requiring the active engagement of students, will provide them with the conceptual frameworks required for the analysis of Marketing issues. Classroom work will involve teams of students working together to prepare and give presentations, and to critique the work presented by others. Emphasis is placed throughout on the application of theory to the solution of practical and realistic marketing problems in the local and the global setting.
Method of Assessment:
Coursework: 50% Final Examination: 50%

Minimum Pass Grade:
Coursework (D) Final Examination (D)

Indicative Reading:

Recommended Textbook:

References:
SUBJECT DESCRIPTION FORM

Subject Title: Product Design and Social Considerations
Subject Code: SD2492

Number of Credits: 3
Hours Assigned: Lecture/Seminar 21 hours
 Tutorial/Exercise 21 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Brief Description and Aims:
Social factors are important in product design. Through a research and design project, students will be able to obtain a fundamental concept and experience in design, in particular considering the social factors. Local contexts related to Hong Kong and Chinese mainland are emphasized in this subject.

Learning Outcomes:

Professional skills
1. To develop fundamental skills in product design.
2. To identify social factors/issues related to a particular design or everyday topic.
3. To identify the relationship among users, society and design.
4. To conduct research to explore a particular topic related to daily life and product design.
5. To generate design solution(s) to solve a specific problem.
6. To present their design ideas by using 2-D and 3-D methods.

Transferable skills
7. To apply the research and design experience related to social consideration in other related subjects and future career.

Indicative Contents:
1. Recent cultural, social and industrial changes
2. Social factors in design
3. Cultures and society
4. Subcultures and design
5. Daily activities and design
6. User, design and designer
7. Policy, implementation and management in design
8. Fundamental inclusive and universal concepts in design
9. Fundamental social/design research

Each student is required to conduct research and identify a design project. The project activities include:
1. Investigation of a current social issue
2. Identification of a design need and title
3. Proposal of design solution(s)
4. Presentation(s): 2-D and 3-D

Method of Assessment:
Coursework (design project) 100%
1. The ability to carry out an independent investigation related to social issues of product design, in particular related to the local context (20%).
2. The ability to apply findings in design project (25%).
3. The ability to develop design ideas (40%).
4. The ability to present design ideas (visual and verbal) (15%).
Indicative References:

Journals:

1. Design Issues
2. The Design Studies
3. The Design Journal
4. The International Journal of Design
5. Journal of Popular Culture
6. Popular Culture Review
SUBJECT DESCRIPTION FORM

Subject Title: Computer System Fundamentals
Subject Code: EIE311
Number of Credits: 3
Hours Assigned: Lecture/Tutorial 39 hours
Laboratory 3 hours
(Equivalent to 9 laboratory hours)

Pre-requisite: Logic Design (EIE211) or Introduction to Logic Design (EIE214)
Co-requisite: nil
Exclusion: nil

Objectives:
To provide a broad treatment of the fundamentals of computer systems.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the fundamentals of computer systems and associated technologies.
2. Solve problems and design simple systems related to computer systems.
3. Apply different important computer interfacing techniques in designing a computer system.
4. Develop a simple assembly program with an assembler.

Category B: Attributes for all-roundedness
5. Present ideas and findings effectively.
6. Think critically.
7. Learn independently.
8. Work in a team and collaborate effectively with others.

Syllabus:
1. Microprocessors and Microcomputers
 The following topics will be discussed in detail with references to one or two well-established (contemporary) microprocessor systems.
 1.1 CPU architecture; memory space and I/O space; instruction fetch and execution; pipelining; essential assembly language instruction types; working principle of assembler; assembler directives/pseudocodes; examples of assembly language programs.
 1.2 Memory interface: Memory devices; address decoding; memory interface; banking; bus buffering and driving; wait state, bus cycle, instruction cycle.
 1.3 Basic I/O interface: Memory-mapped I/O; I/O port address decoding; programmable peripheral interface; handshaking.
 1.4 Interrupts: polling, programmed I/O, interrupt I/O; Basic interrupt processing, software interrupt, expanding the interrupt structure, interrupt controller.
 1.5 Serial interface: Asynchronous/synchronous interface, RS232C serial interface and handshaking.
 1.6 Direct memory Access and DMA-controlled I/O: Basic DMA operation, DMA controller, shared-bus operation, disk memory systems, video displays.
 1.7 Cache memory: mapping, associativity; replacement policies; write policies; performance.

2. Disk Operating System
 2.1 Roles of basic input/output system (BIOS) and basic disk operating system(DOS); power-up sequence; bootstrap; command processor; system control, automatic program execution (e.g. batch file); operating system calls via software interrupts; system utilities; file operating commands; device driver.
 2.2 File system: space management e.g. file allocation table; File management; directory entry and file control block.
2.3 Multitasking and time-sharing: time-slicing; process states and process control block; context-switching mechanism; scheduling schemes and process priorities.

3. **Computer Arithmetic**
 3.1 Data formats: signed/unsigned numbers, binary/decimal/BCD numbers, ASCII, fixed/floating point numbers, IEEE standard; Arithmetic algorithms: Fast addition, multiplication and division algorithms.

Laboratory Experiment:
Six of the following topics or others.
1. Memory manipulation & Data representation
2. Serial communication
3. Parallel communication
4. Interrupt I/O
5. DMA I/O
6. BIOS
7. Device driver
8. Power-up procedures
9. User interface

Method of Assessment:
Continuous Assessment: 40% Examination: 60%

The continuous assessment consists of short quizzes, assignments, laboratory reports and tests.

Textbook:

Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: Object-Oriented Design and Programming
Subject Code: EIE320

Number of Credits: 3
Hours Assigned:
Lecture/Tutorial 36 hours
Laboratory 6 hours
(Equivalent to 18 laboratory hours)

Pre-requisite: Computer Programming (ENG236)
Co-requisite: nil
Exclusion: nil

Objectives:
This subject will provide students with the principles of object orientation from the perspective of Java implementation and UML. Students are expected to learn the concepts of and practical approaches to object-oriented analysis, design and programming using UML and Java.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the principles of object oriented design.
2. Apply the programming language Java in object oriented software development.
3. Apply the tool UML in object oriented software modeling.
4. Develop a simple software application using the object oriented approach.

Category B: Attributes for all-roundedness
5. Learn independently and be able to search for the information required in solving problems.
6. Present ideas and findings effectively.
7. Think critically.
8. Work in a team and collaborate effectively with others.

Syllabus:
1. Introduction to Software Engineering
 Software products; the software process; process models; process visibility.
2. Java Programming Basic
 Java technologies; Java platform; Java language basic: variables, operators, expressions, statements, blocks, control flow, methods, arrays
3. Object-Oriented Programming with Java
 Objects and classes; class definition; fields, constructors and methods; object interaction; grouping objects; array and collections; designing classes; inheritance and polymorphism; managing inheritance: creating subclasses and super-classes, hiding member variables, overriding methods. Interfaces and packages.
4. Web Programming with Java
 Java applets: creating custom applet subclasses, HTML applet tag syntax, passing information from Web pages to applets. Java Servlets: architecture of servlets, client interaction, life cycle of servlets, saving client states; servlet communications, session tracking, and using server resources.
5. Unified Modelling Language (UML)
Laboratory Experiment:
1. Laboratory Work
 Students will implement an on-line shopping system using Java Servlets and Tomcat Web server.
 Students will use a UML software tool to write requirement specifications and design documents for the
 on-line shopping system.
2. Practical Work
 Students will be requested to write and debug Java programs during tutorial and lab sessions.

Method of Assessment:
Coursework: 40% Examination: 60%

The continuous assessment consists of a number of short quizzes, programming assignments, a mini-
project, laboratory reports and a mid-term test.

Textbooks:
 Wesley, 1999.
2. D.J. Barnes and M. Kolling, Objects First with Java: A Practical Introduction using BlueJ, Prentice-

Reference Books:
2. R.C. Lee and W.M. Tepfenhart, Practical Object-Oriented Development with UML and Java, Prentice-
 Addison-Wesley, 1999.
SUBJECT DESCRIPTION FORM

Subject Title: Telecommunication Technologies Subject Code: EIE325
Number of Credits: 3 Hours Assigned: Lecture/Tutorial 36 hours
 Laboratory 6 hours (Equivalent to 18 laboratory hours)

Pre-requisite: Information Technology (ENG224) and Co-requisite: nil Exclusion: nil
Linear Systems (EIE312) or Signals and Systems (EIE341)

Objectives:
To equip students with the fundamentals of data communication systems, and to train students to appreciate the underlying principle of modern communication systems.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the fundamentals of telecommunication systems and associated technologies.
2. Solve problems and design simple systems related to telecommunications.
3. Apply theory to practice by doing laboratory experiments on important telecommunication techniques.

Category B: Attribute for all-roundedness
4. Team work and presentation skills will be developed through the case study.
5. Judicious choice of case studies will also allow students to develop a fuller understanding of social and community issues related to the application of telecommunications technologies.
6. To appreciate the importance of creativity and critical thinking, and to realize that there is no perfect telecommunication system for any particular situation and that engineers have to find “optimum” solutions, or make optimum designs.

Syllabus:
1. Introduction
 A communication model. Digital data communications and networks.
2. Data Transmission and Channel
 Review of time and frequency domain representations, Fourier Series, Fourier transform, sampling and aliasing. Analogue and digital data transmission. Data rate and required bandwidth. Channel impairments. Characterisation and attenuation of transmission media, twisted pair, cable, optical fibre, free space.
3. Data Encoding
4. Data Link Control
5. Data Communication Interface, Multiplexing and Switching
6. Current Applications
 Fixed telephone network. Private automated branch exchange. RS-232. V.90 56kbps modem. ADSL, discrete multitone, xDSL. Cable modem. Hybrid fibre coax. Other selected applications examples such as mobile cellular network, satellite networks, global position system.
Laboratory Experiment:
1. Construction and testing of a simple FSK modem (9 hours)
2. Simulation of analogue modulation using MATLAB (3 hours)
3. Simulation of digital line coding and estimation of BER using MATLAB (3 hours)
4. Simulation of code division multiple access using MATLAB (3 hours)

Case Study:
1. A detailed study of one of the current applications of telecommunication technologies addressed in this course (for example, section 6 of the Syllabus).

Method of Assessment:
Continuous Assessment: 40% Examination: 60%

The continuous assessment consists of a number of short quizzes, assignments, the case study, laboratory reports and two tests.

Textbook:

Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: Digital Signal Processing for Multimedia Applications
Subject Code: EIE328

Number of Credits: 3
Hours Assigned: Lecture/Tutorial 33 hours
Laboratory 9 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
This subject provides students with the concepts of using digital signal processing techniques for multimedia applications. After the completion of the subject, the student should be able to appreciate a wide range of techniques and standards adopted in the multimedia industry.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the concepts of using digital signal processing techniques for multimedia applications.
2. Understand the formats of different multimedia signals
3. Understand the fundamentals of using digital signal processing techniques for different multimedia standards and the technologies.
4. Perform multimedia authoring, and to process and integrate different types of signals to form multimedia presentations.
5. Appreciate the architectures and technologies of various multimedia products, such as DVD player, digital video camera, MP3 player, etc.

Category B: Attributes for all-roundedness
7. Communicate effectively.
8. Think critically and creatively.

Syllabus:

1. Introduction
 Perspective of multimedia computing and communications, review of the key enabling technologies, overview of multimedia system requirements and multimedia software tools.

2. Digital Signal Processing for Multimedia Compression
 Media and data streams. DSP for multimedia processing and coding. DSP for image processing and coding and audio coding.

3. Multimedia Compression Standards

4. Multimedia Information Indexing and Retrieval
 MPEG7, Content-based retrieval (CBR) in image database, some existing CBR systems/applications. Digital libraries.

5. Tools for Multimedia Integration

6. Digital Signal Processing for Multimedia Communications
 Quality of service (QOS) requirements for multimedia communications. Traffic modeling of multimedia sources. Error resilience and concealment. Application example:
7. **Case Studies**
 DVD player, Digital video cameras, Digital video cassette recorder, and MP3 Player

Laboratory Experiments:
1. Developing Simple Multimedia Applications using SMIL
2. Developing Interactive Multimedia Applications using SMIL
3. Developing 3D Multimedia Applications using VRML
4. Analysis of image/video coding

Method of Assessment:
Continuous assessment: 40% Examination: 60%

The continuous assessment will consist of a number of assignments, laboratory reports, and two tests.

Reference Books:
Subject Title: Signals and Systems
Subject Code: EIE341
Number of Credits: 3
Hours Assigned: Lecture/Tutorial 36 hours
Laboratory 6 hours
(Equivalent to 18 laboratory hours)

Pre-requisite: Mathematics I (AMA227)
Co-requisite: nil
Exclusion: nil

Objectives:
1. To provide students with basic concepts and techniques for the modelling and analysis of linear continuous-time and discrete-time signals and systems.
2. To provide students with an analytical foundation for further studies in Communication Engineering and Digital Signal Processing.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the representations and classifications of the signals and systems.
2. Model linear systems using time and frequency domain approaches for both continuous-time and discrete-time models.
3. Analyze signals and systems using both time domain and frequency domain techniques.
4. Understand the generation of a discrete-time signal by sampling a continuous-time signal.
5. Understand the principles of filters.
6. Apply software tools, particularly MATLAB, to laboratory exercises for experimenting with theories, and to the analysis and design of signals and systems.
7. Appreciate the advantages and disadvantages of using the different representations and modeling approaches.

Category B: Attributes for all-roundedness
8. Present ideas and findings effectively.
9. Think critically.
10. Learn independently.
11. Work in a team and collaborate effectively with others.

Syllabus:
1. Signal Representation
 Signal Classification, Continuous and Discrete-Time Signals. Time-Domain and Frequency-Domain Representations.
2. Continuous-Time and Discrete-Time Systems
3. Fourier Representations for Signals
4. System Analysis
 Frequency Response of LTI systems, System Frequency Response, Applications, Linear and Circular Convolution, Ideal Filters
5. Laplace Transform
6. **z-Transform**

Laboratory Experiments:
1. Fundamentals of Signals
2. Linear Time-Invariant Systems
3. Fourier Analysis of Continuous-time Signals
4. Sampling
5. Fourier Analysis of Discrete-time Signals
6. Laplace Transform

Method of Assessment:
Continuous Assessment: 40% Examination: 60%

The continuous assessment will consist of a number of assignments, laboratory reports, and two tests.

Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: Computer Networks
Subject Code: EIE342
Number of Credits: 3
Hours Assigned: Lecture/Tutorial 36 hours
Laboratory 6 hours
(Equivalent to 18 laboratory hours)

Pre-requisite: Telecommunication Technologies (EIE325)
Co-requisite: nil
Exclusion: Data and Computer Communications (EIE442)

Objectives:
This subject is designed to:
1. provide a solid foundation to the students about architectural concepts of data communications and computer networking
2. enable the students to master the knowledge about data communications and computer networking in the context of real-life applications
3. prepare the students for understanding, evaluating critically, and assimilating new knowledge and emerging technology about computer networks
4. enable the students to understand the impact of new computer and communication technology on human society

Student Learning Outcomes:
On completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Describe the services, functions, and inter-relationship of different components within an architectural model such as Open System Interconnection (OSI) seven layer model and TCP/IP model.
2. Describe how components and subsystems in the physical layer, data link layer, and network layer inter-operate; and analyze their performance.
3. Evaluate critically the performance of some common computer networks.
4. Design solutions to solve engineering problems that require the applications of computer networking technology.

Category B: Attributes for all-roundedness
5. Take up new knowledge by reading related magazines, journal papers, and trade brochure, and by analyzing new situations while taking into account various constraints.
6. Describe how rapid progress of computer and communication technology can impact on the society in various aspects, such as culture and economics.

Syllabus:
1. Communication Networks, Services, and Layered Architectures
2. Protocols in Data Link Layer
 Automatic Repeat Request (ARQ) protocol and reliable data transfer service. Sliding-window flow control. Framing and point-to-point protocol, flow control and error control protocols.
3. Packet Switching Technology
4. TCP/IP Protocols
 IP packet format, addressing, subnetting, and IP routing. TCP protocol: connection management and congestion control. Dynamic Host Configuration, Network Address Translation.
5. Network applications
 Sockets, client-server model, Domain name systems (DNS), the File Transfer Protocol (FTP), Simple mail transfer protocol, hypertext transfer protocol (HTTP).
6. Case Studies (conducted in tutorial sessions)
 Recent development in data Communications and computer Networking.
 Selected topics: Voice over IP, Virtual Private Network, Internet2, High Speed Router design … etc.

Laboratory Experiments:
1. Cisco router configuration and programming
2. Static routing and dynamic routing
3. Protocol Analysis
4. Network Address Translation
5. Routing simulation study
6. Terminal Server over the Ethernet

Method of Assessment:
Continuous assessment: 50% Examination: 50%

The continuous assessment will consist of a number of assignments, laboratory reports, case study reports (administered in tutorial sessions), and two tests.

Textbook:

Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: Fundamentals of Embedded Systems
Subject Code: EIE344
Number of Credits: 3
Hours Assigned: Lecture/Tutorial 37 hours
Laboratory 5 hours
(Equivalent to 15 laboratory hours)

Pre-requisite: Computer System Fundamentals (EIE311) or
Computer System Principles (EIE343)
Co-requisite: nil
Exclusion: Interface and Embedded Systems (EIE322)

Objectives:
To provide students with the concepts and techniques in designing embedded software and hardware interfaces.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the fundamental knowledge of embedded systems
2. Apply programming techniques to satisfy functional and response-time requirements of embedded systems
3. Apply circuit and computer knowledge onto product design
4. Practice self-learning through reading of manuals and component specifications
5. Demonstrate practical skills in the construction of prototypes

Category B: Attributes for all-roundedness
6. Pursue life-long learning through searching and reading technical materials
7. Think critically
8. Work in a team and collaborate effectively with others

Programme Outcomes

Category A: Professional/academic knowledge and skills
Programme Outcome A1: This subject contributes to the programme outcome through teaching of the fundamentals of embedded systems and providing the students with an opportunity to practice the application of knowledge.
Programme Outcome A3: This subject contributes to the programme outcome by providing opportunity for students to design a simple embedded system to meet realistic specification.
Programme Outcome A4: This subject contributes to the programme outcome by providing opportunity for students to formulate and evaluate the performance of different embedded systems.
Programme Outcome A5: This subject contributes to the programme outcome providing the students with an opportunity to conduct experiments such as applying programming techniques to satisfy functional and response-time requirements of embedded systems.
Programme Outcome A7: This subject contributes to the programme outcome providing opportunity for students to apply modern development tools for virtual prototyping.

Category B Attributes for all-roundedness
Programme Outcome B3: This subject contributes to the programme outcome through the practice of reading manuals and component specifications.
Programme Outcome B4: This subject contributes to the programme outcome by providing the students with an opportunity to practice working in a team.
Programme Outcome B5: This subject contributes to the programme outcome through teaching of key elements of embedded systems and providing the students with an opportunity to develop and evaluate prototypes according to the specification.
Syllabus:

1. **Introduction on Embedded System**
 - Microcontroller-based, microprocessor-based and PC-based approaches
 - The details of a typical microcontroller architecture, e.g. the 8051
 - Programming (assembly and C) techniques based on embedded system
 - Performance evaluation on assembly program, e.g. program size and running time
 - Data conversion and serialization

2. **Programming with the Built-in Components in Microcontroller**
 - Timers/counters
 - Serial port communications and RS232 interfacing
 - Interrupt handling: timer interrupt, serial communication interrupt and external hardware interrupt

3. **I/O Interfacing**
 - Pulse generation and measurement
 - Keyboard multiplexing
 - Display multiplexing and driving LCD controllers
 - Analog signals sensing: ADC and DAC interfacing

4. **Peripheral Interfacing**
 - Motor control, e.g. DC motor, stepper motor and servo motor
 - Detection and measurement of motor movements

5. **Memory Interfacing**
 - Address bus and data bus control for external memory devices
 - Interfacing to memory devices, e.g. RAM, NV-RAM and ROM

 - Discussion on the embedded software issues including tasks and events, interrupt, inter-task communication and shared-variables problems
 - Introduction to RTOS: Kernel services, semaphores, priority inversion, task priority and scheduling

Laboratory Experiments:

1. Serial I/O and timer-based baud rate generation
2. Timer-based pulse width generation and measurement
3. Interrupt handling

Method of Assessment:

Continuous Assessment: 50% Examination: 50%

The continuous assessment will consist of assignments, tests and laboratory work.

Reference Books:

SUBJECT DESCRIPTION FORM

Subject Title: Integrated Project Subject Code: EIE360
Number of Credits: 3 Hours Assigned: Lecture 24 hours
 Laboratory 36 hours
 Mini-project Work 60 hours
 Total 120 hours

Pre-requisite: Electronics Design (EIE210) Co-requisite: nil
Computer Systems Fundamentals (EIE311) Exclusion: nil

Objectives:
At a mid-stage of the programme, this subject plays the role of applying knowledge acquired in other subjects in an integrated manner. While the emphasis will mainly be placed on the technical challenges that may encompass component evaluation, circuit design, software development and troubleshooting, students will also be given opportunities to face various non-technical difficulties behind the implementation/fabrication of electronic/information products.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Integrate and apply knowledge acquired in previous subjects.
2. Design under cost constraints and with component limitations/tolerances in mind.
4. Locate and resolve problems, in both circuits and software.

Category B: Attributes for all-roundedness
5. Search, self-learn and try untaught solutions.
6. Exercise discipline and time-planning to meet deadlines.
7. Present ideas and findings effectively.
8. Think critically.
9. Learn independently.
10. Work in a team, collaborate effectively with others, and exercise leadership.
11. Exercise entrepreneurship while designing the project by addressing cost effectiveness, market position, entry barrier, user acceptance…etc.

(Note: The above outcome number will be referred to within square brackets later)

Syllabus / Operation:
The project(s) shall be of engineering development in nature [1,2,3,4,5,6,9,11] with objectively defined milestones (or Subtasks). The scope to be covered shall include embedded software development and circuit design, but does not exclude the possibilities of extending into areas such as DSP or RF. The project(s) shall not be close-ended in nature [2,3,5,8] and shall provide ample headroom for the more enthusiastic students to excel. Students shall work in groups of two or three [10]. Each Subtask will be given a certain period of time to complete. Each student will take turn in serving as the Team Leader [11] to lead the group to complete a subtask assigned. Progress will be measured by functional Demonstrations, and one or two written Progress Reports [7]. Upon the completion of the project, each group should give a demonstration/presentation [7] of the completed product and submit a Final Report [7]. Students are required to individually keep a Logbook [7] on the work performed during the entire period. The logbooks are to be evaluated and signed by the supervisor /assessor on a monthly or more frequent basis. At the end of the project, the logbook will be collected and graded.

Lectures:
Lectures are to be conducted during the first half of the semester. During these lectures, the instructor shall give clear explanation on the functional and technical requirements [2,3], with a schedule for
submitting deliverables [6]. Concepts specific to the project(s), which are not yet learnt by the students, are to be covered in these lectures. Concepts behind critical use of tools and equipment shall also be strengthened [4]. Copies of supplementary/reference material shall be distributed, or, links to on-line material shall be provided for self-paced learning [5].

Guided Laboratory Experiments:

The project will normally require the students to learn to use specific tools and/or equipment [4]. Laboratory demonstrations and exercises will be arranged in the early weeks. Below are some examples:

1. Troubleshooting and measurement techniques using typical equipment.
2. Use of project-specific development tools, software and hardware.
3. Use of specialized equipment for project-specific measurements.

Self-Paced Work:

The class could well be composed of a good mix of students with different timetables. Multiple sessions of laboratory, inevitably some evening slots, will be scheduled to cater for self-paced work in the laboratory, particularly during the second half of the semester.

Method of Assessment:

Continuous assessment: 100%

Throughout the project, the subject lecturer will conduct periodic interview discussions with the student groups. On these occasions, assessment on individual student’s ability and contribution will be conducted, according to the attributes detailed below.

- **INSIGHT** as evidenced by how well issues are understood and resolved [1,2,3,4]
- **DRIVE** as evidenced by initiative, diligence and tenacity [5,6,9,10]
- **CREATIVITY** as evidenced by ingenuity and imagination [5,8,9,10]
- **COMMUNICATION** as evidenced by an ability to express ideas clearly and succinctly [7]

At the completion of each subtask, one member of a team will be asked to give a demonstration to the assessor. Based on the presentation and response to questions addressed to the members, the assessor shall rate the contribution, achievement, and performance of each member. [2,4,6,7,8]

Below is a recommended assessment scheme:

<table>
<thead>
<tr>
<th>Assessment type</th>
<th>Weighting</th>
<th>Number of times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance</td>
<td>10 %</td>
<td>≥ 5</td>
</tr>
<tr>
<td>Quiz/Test</td>
<td>10 %</td>
<td>≥ 2</td>
</tr>
<tr>
<td>Progress Demonstrations</td>
<td>20 %</td>
<td>≥ 2</td>
</tr>
<tr>
<td>Logbook & Presentation</td>
<td>20 %</td>
<td>≥ 2</td>
</tr>
<tr>
<td>Progress & Final Reports</td>
<td>20 %</td>
<td>≥ 2</td>
</tr>
<tr>
<td>Final Demonstration</td>
<td>20 %</td>
<td>1</td>
</tr>
</tbody>
</table>

Reference Books:

To be specified by the subject lecturer for each project.
SUBJECT DESCRIPTION FORM

Subject Title: English for Effective Workplace Communication
Subject Code: ELC3508

Number of Credits: 2
Hours Assigned: 28 hours

Pre-requisite: University English I (ELC2501)
Co-requisite: nil
Exclusion: nil
University English II (ELC2502)

Objectives:
This subject aims to develop the English language skills required by students to communicate effectively in their future professional careers.

Learning Outcomes:
By the end of the subject, students should be able to communicate effectively in workplace contexts through
1. interacting professionally in a job interview,
2. writing appropriate correspondence related to engineering professions, and
3. writing logical and coherent reports.

To achieve the above outcomes, students are expected to use language and text structure appropriate to the context, select information critically, present ideas systematically and logically, and provide support for stance and opinion.

Content:
This content is indicative. The balance of the components, and the corresponding weighting, will be based on the specific needs of the students.

1. **Job interviews and work-related discussions**
 Practising the specific verbal and non-verbal skills required when communicating with potential employers in job-seeking interviews.

2. **Workplace correspondence**
 Selecting and using relevant content; organising ideas and information; maintaining appropriate tone, distance and level of formality; achieving coherence and cohesion; adopting an appropriate style, format, structure and layout.

3. **Workplace reports**
 Selecting and using relevant content; organising ideas and information; describing tables and graphs; discussing and analysing data; adopting an appropriate style, format, structure and layout.

4. **Language appropriacy**
 Using context-sensitive language in spoken and written English.

5. **Language development**
 Improving and extending relevant features of grammar, vocabulary and pronunciation.

Teaching and Learning Approach:
The subject is designed to introduce students to the communication skills, both oral and written, that they may need to function effectively in their future professions.

The study method is primarily seminar-based. Activities include teacher input as well as individual and group work involving drafting and evaluating texts, mini-presentations, discussions and simulations. Students will be referred to information on the Internet and the ELC’s Centre for Independent Language Learning.
Learning materials developed by the English Language Centre are used throughout this course. Additional reference materials will be recommended as required.

Method of Assessment:
Continuous Assessment: 100%

Students’ oral and writing skills are evaluated through assessment tasks related to the learning outcomes. Students are assessed on the accuracy and the appropriacy of the language used in fulfilling the assessment tasks, as well as the selection and organisation of ideas.

Indicative references:
SUBJECT DESCRIPTION FORM

Subject Title: Introduction to Industrial Design
Subject Code: SD348
Number of Credits: 3
Hours Assigned: Lecture/Seminar 28 hours, Tutorial/Exercise 14 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Brief Description and Aims:
This course gives an introduction to the field of Industrial Design as a creative discipline, a discipline which synthesises knowledge from fields as diverse as e.g. the Arts, the Sciences and Engineering. Industrial Design is known for its capacity to innovate and to add value to products and services. Industrial Designers solve problems centred on user needs with the intent to improve the quality of people’s lives. The design process incorporates unique problem solving methods and creativity process. Industrial Design intends to work with technological and ecological parameters in an appropriate way. The development and use of state of the art tools and technologies puts Industrial Design in a significant position socially and economically.

It is the aim of this course to equip students with enough knowledge and experience of Industrial Design to appreciate the profession, relate to its practitioners in different work situations, employ the design process appropriately for problem solving and innovation, and to realise the importance of a user centred approach to the creation of new products and services.

Learning Outcomes:

Professional skills
1. To appreciate the industrial/product design profession, relate to its practitioners in different work situations.
2. To employ the design process appropriately for problem solving and innovation.
3. To realise the importance of a user centered approach to the creation of new products and services.
4. To apply visualisation skill in project presentation.

Transferable skills
5. To understand objectives of industrial/product design, and apply knowledge and experience in other related subjects and future career.

Indicative Contents:
The field of Industrial Design is introduced through a series of lectures featuring a review of milestones of design achievements internationally and locally. The relationships between Design, culture and society are highlighted through a look at topics like cultural identity in product design, user centred design, employment of technologies, and design and sustainability.

Further lectures and seminars cover two major parts of Industrial Design and its professional practice:

1. The essentially theoretical foundation of the industrial design process and methodology covering topics such as
 - Design and culture
 - Form, aesthetics and semantics
 - Human factors and ergonomics in design
 - Research and problem identification
 - Design requirements and design brief
 - Design development and specifications
 - Design evaluation and concept selection

2. The essentially practical aspects of the industrial design process covering topics such as
 - Design visualisation, presentation and communication
 - Product prototyping and user testing
 - Manufacturer and marketing relations
Emphasis in the practical exercises is placed on student’s creativity in relation to designing. Students explore different approaches to problems and experience methods of problem solving with the designer’s tools.

Method of Assessment:
Coursework (design project): 100%

1. The ability to understand design process (10%).
2. The ability to conduct investigation and then to apply their findings in design (30%).
3. The ability to develop design ideas (45%).
4. The ability to present design ideas (visual and verbal) (15%).

Indicative References:
2. Design Issues. The MIT Press. (Journal)
3. Design Management Journal. The Design Management Institute. (Journal)
SUBJECT DESCRIPTION FORM

Subject Title: Computer Game Development II
Subject Code: SD3983
Number of Credits: 3
Hours Assigned: Lectures/Tutorials 35 hours, Laboratory 20 hours

Pre-requisite: Computer Graphics (COMP407) and Computer Game Development I (SD3982) or Computer Game Development I (SD3984)
Co-requisite: nil
Exclusion: nil

Objectives:
1. To introduce students with fundamental concepts and algorithms in developing 3D computer game.
2. To provide students with hands-on experience in designing and developing 3D computer game.

Student Learning Outcomes:

Professional/academic knowledge and skills
1. Identify essential building blocks in 3D computer games
2. Understand, analyze, implement and evaluate algorithms in developing 3D computer games
3. Realize trends in real-time algorithms in advanced 3D computer games
4. Explore new algorithms for future 3D computer games
5. Demonstrate understanding of game production process through developing a 3D computer game in a team starting from ideas

Attitudes of all-roundedness
6. Collaborate, organize and communicate with others in effective team work
7. Realize the interdisciplinary nature in 3D computer games development and appreciate importance of collaboration
8. Be creative and critical to game and play design

Syllabus:
1. Introduction
 Game production pipeline, 3D game engine and components.
2. Graphics and Rendering
 Graphics rendering pipeline; 3D hardware: programmable graphics pipeline, shading languages, procedural shading, lighting, effects; scene management; visibility processing, resource management; 3D modeling, skeleton, texturing and materials, animation.
3. Audio
 3D and multi-channel audio; modeling for effects, echo.
4. Physics
 Physics basic concepts; kinematics, kinetics, dynamics; Newton’s laws, mass, moment of inertia, friction, force; constrained motion; particle systems.
5. Artificial intelligence
 Path planning; agent architecture; decision-making systems; genre-specific AI (FPS, RTS, RPG, racing and sport AI), behavioral modeling, artificial life.
6. Network
 Multiplayer game architecture, networking, protocols, topologies, security, database; online game systems.

Laboratory Experiment:
3D modeling software (3D Studio Max).
Method of Assessment:
Laboratory: 30% Mini-project: 70%

Reference Books:
Subject Title: Computer Game Development I
Subject Code: SD3984
Number of Credits: 3
Hours Assigned: Lectures/Tutorials 36 hours, Laboratory 28 hours

Pre-requisite: Computer Programming (ENG236)
Co-requisite: nil
Exclusion: nil

Objectives:
1. To provide a broad overview of fundamental elements and concepts in computer games design and development, and in their production process
2. To provide students with hands-on experience in designing and developing a computer game

Learning Outcomes:

Category A: Professional/academic knowledge and skills
1. Design, analyze, implement and evaluate computer games
2. Appreciate computer games’ designs and complexities
3. Demonstrate understanding of game production process through developing a computer game in a team starting from ideas

Category B: Attitudes of all-roundedness
4. Collaborate, organize and communicate with others in effective team work
5. Realize the interdisciplinary nature in computer games development and appreciate importance of collaboration
6. Be creative and critical to game and play design

Syllabus:
1. Game Design Overview
 History of computer games, types of computer games (video, console, arcade, hand-held, wireless, mobile); game genres; play mechanics; game rules; game balancing; obstacle/aid, penalties/rewards; board game, role-playing game; interface design, information design, human-computer interaction design; integration of visual, audio, tactile and textual elements; visual design: composition, lighting and color, graphics design; Audio design: music, sound effects; storytelling; game theory

2. Media and Tools
 Game arts; tools and standards of media: image and audio

3. Game Production Process
 Evaluating game concepts; game design documentation, storyboard, playtest; content creation, team roles, group dynamics, risk assessment; software engineering, project management; prototyping, iterative development; pre-production, production, testing

4. Game Programming
 Game loop; game engine architecture; event processing; SDL; physics and collision detection; networking

Laboratory Experiment:
Case study:

Method of Assessment:
Laboratory: 20% Miniproject: 80%
Reference books:

11. IGDA (www.igda.org)
12. SDL (www.libsdl.org)
SUBJECT DESCRIPTION FORM

<table>
<thead>
<tr>
<th>Subject Title:</th>
<th>Computer Graphics</th>
<th>Subject Code:</th>
<th>COMP407</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Credits:</td>
<td>3</td>
<td>Hours Assigned:</td>
<td>Lecture 42 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Laboratory 7 hours</td>
</tr>
<tr>
<td>Pre-requisite:</td>
<td>Computing Programming (ENG236)</td>
<td>Co-requisite:</td>
<td>nil</td>
</tr>
<tr>
<td>Exclusion:</td>
<td>nil</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objectives:
This subject allows students to:
1. learn basic and fundamental computer graphics techniques;
2. learn image synthesis techniques;
3. examine applications of modelling, design and visualization.

Student Learning Outcomes:
After taking this subject, the students should be able to:

Category A: Professional/academic knowledge and skills
1. gain proficiency in 3D computer graphics API programming;
2. understand the interactive computer graphics architecture;
3. possess in-depth knowledge of display systems, image synthesis, shape modeling, and interactive control of 3D computer graphics applications;
4. enhance their perspective of modern computer system with modeling, analysis and interpretation of 2D and 3D visual information.

Category B: Attributes for all-roundedness
5. understand, appreciate and follow the development and advancement of computer graphics technologies, including advanced technologies for 3D modelling, high performance rendering.

Syllabus:
1. **Basic Computer Graphics Hardware/Software Interfaces (15 hours)**
 Graphical input/output devices; 2D primitive drawing; rasterization; 2D transformation; 3D transformation and projection; synthetic camera and viewing volume; clipping; object modeling and hierarchical structures.

2. **Image Synthesis and Generation Techniques (12 hours)**
 Some of the important image generation techniques including hardware-based rendering, scan-conversion, local illumination models, reflections and shading; related issues such as anti-aliasing and texture mapping.

3. **Applications of Computer Graphics (15 hours)**
 Introduction to OpenGL and device independent Application Programming Interfaces (API), virtual reality, hardware supported 3D modeling and rendering.

Laboratory Experiment:
Laboratory exercises will normally be conducted using the currently available computer graphics API such as OpenGL. The students will be exposed to basic frame-buffer control, pixel processes, rasterization, 2D drawings, 3D transformations, projections, scene hierarchy, modeling objects, color and interactive animation.

Case Study:
If applicable, case studies may be conducted on modeling and design systems that are used in commercial applications.
Method of Assessment
Continuous Assessment: 60% Examination: 40%

Textbook:

Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: Middleware and Distributed Objects
Subject Code: COMP436
Number of Credits: 3
Hours Assigned: Lecture 42 hours
Seminar/Laboratory 7 hours

Pre-requisite: Principles of Programming (COMP201) or Object-Oriented Design and Programming (EIE320)
Co-requisite: nil
Exclusion: Internet System Integration (COMP403)

Objectives:
1. To present an integrated view of the basic building blocks of a distributed system and how middleware can help developers to more easily satisfy the requirements of building distributed systems.
2. To provide the foundation knowledge of middleware, particularly object-oriented middleware.
3. To provide training in using CORBA as middleware to build practical distributed systems.

Student Learning Outcomes:
After taking this subject, the students should be able to:

Category A: Professional/academic knowledge and skills
1. understand the basic structure of distributed systems;
2. understand the motivation of using middleware;
3. understand the basic theories underlying the design of middleware;
4. learn to make judgment in choosing a suitable middleware for application problems;
5. understand the basic concepts of CORBA;
6. develop distributed object-based systems using CORBA.

Category B: Attributes for all-roundedness
7. apply the technical knowledge learned to solve real-life practical problems;
8. appreciate and evaluate existing and new technologies.

Syllabus:
1. Principles of object-oriented middleware (3 hours)
 Role of middleware in distributed systems; types of middleware; object-oriented middleware; local versus distributed objects; developing systems with object-oriented middleware.

2. Fundamentals of CORBA (9 hours)
 Architecture; Interface definition language (IDL); system development using CORBA.

3. Communication paradigms of CORBA (6 hours)
 Synchronous requests; oneway requests; deferred synchronous requests; asynchronous requests; dynamic invocation; CORBA event service; pros and cons of different communication paradigms of CORBA.

4. Portable Object Adaptor (POA) (12 hours)
 Objects vs. servants; lifecycle of objects; request invocation via POA; servant activator and servant locator.

5. Case study 1: load balancing (6 hours)
 Using POA to implement various load balancing solutions for distributed systems.

6. Case study 2: resource management (6 hours)
 Using CORBA to implement facilities for resource management in distributed systems, e.g. resource lookup, resource acquisition; CORBA naming service.
Laboratory Experiment:
In the laboratory session, students will learn how to develop distributed systems using an implementation of CORBA, called VisiBroker (or the Borland Enterprise Server – VisiBroker Edition), using Java as the programming language.

Case Study:
Case studies on load balancing and resource management with CORBA.

Method of Assessment
Continuous Assessment: 55% Examination: 45%

Textbook:

Reference Books:
4. Articles from journals, magazines, and conference proceedings, including ACM TOCS, IEEE TPDS, IEEE TSE, IEEE TOC, CACM, IEEE Computer, ICDE, DOA.
SUBJECT DESCRIPTION FORM

<table>
<thead>
<tr>
<th>Subject Title:</th>
<th>Mobile Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Code:</td>
<td>COMP437</td>
</tr>
<tr>
<td>Number of Credits:</td>
<td>3</td>
</tr>
<tr>
<td>Hours Assigned:</td>
<td>Lecture 42 hours, Tutorial/Laboratory 7 hours</td>
</tr>
</tbody>
</table>

Pre-requisite: Foundations of Database Systems (COMP311) or Co-requisite: nil Exclusion: nil
Object-Oriented Design and Programming (EIE320) and Computer Networking and Internet Technologies (EIE323) or Data and Computer Communications (EIE333) or Computer Networks (EIE342)

Objectives:
To introduce students the basic concepts and principles of mobile computing;
To provide students the knowledge about theoretical and practical aspects of mobile computing;
To train students in developing skills for developing solutions and building software for mobile computing applications using standard languages and tools.

Student Learning Outcomes:
After taking this subject, the students should be able to:

Category A: Professional/academic knowledge and skills
1. grasp the concepts and features of mobile computing technologies and applications;
2. have a good understanding of how the underlying wireless and mobile communication networks work, their technical features, and what kinds of applications they can support;
3. identify the important issues and the principles of developing mobile computing systems and applications;
4. organize the functionalities and components of mobile computing systems into different layers and learn various related techniques for realizing the functionalities;
5. develop solutions for mobile computing applications by analyzing their characteristics and requirements, selecting the appropriate computing models and software architectures, and applying standard programming languages and tools;
6. organize and manage software built for deployment and demonstration.

Category B: Attributes for all-roundedness
analyze requirements and solve problems using systematic planning and development approaches;
search for and read critically the information required in solving problems;
write and present technical survey papers in well-organized and logical manner;
work in teams and collaborate with classmates.

Syllabus:
1. Introduction to mobile computing (3 hours)
 Motivations, concepts, challenges, and examples of mobile computing; relationship with distributed computing, Internet computing, ubiquitous computing, and pervasive computing.

2. Introduction to wireless communication and networks (9 hours)
 Wireless communication concepts; modulation and multiplexing techniques (spread spectrum, multi-access methods); medium access control; classification of wireless networks: WPAN, WLAN, WMAN, WWAN; evolution of cellular communication systems (1G, 2G, 3G, etc).

3. Mobility management (6 hours)
 Handoff and location management concepts; mobility management in PLMN; mobility management in mobile Internet; mobility management in mobile agent systems; adaptive location management methods.

4. Mobility computing models and application architectures (9 hours)
 Extended client-server model; peer-to-peer model; mobile agent model; wireless Internet; smart client; messaging; mobile data management; mobile OS; WAP, WML, J2ME.

5. Location-based services (6 hours)
Concepts and applications; mobile positioning techniques; GIS; LBS architecture and protocols.

6. **Mobile computing middleware (3 hours)**
 Functionalities of mobile computing middleware; reflective middleware; tuple space middleware; context-aware middleware; publication/subscription and other middleware solutions.

7. **Ad hoc networks and applications (6 hours)**
 Concepts and applications; routing in mobile ad hoc networks; sensor networks.

Tutorials: 2 hours

Laboratory Experiment:
1. WAP programming. (2 hours)
2. J2ME programming. (3 hours)

Method of Assessment
Continuous Assessment: 55% Examination: 45%

Textbook:

Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: Principles of Virtual Reality

Subject Code: EIE408

Number of Credits: 3

Hours Assigned:
- Lecture/Tutorial: 33 hours
- Laboratory: 9 hours
 (Equivalent to 27 laboratory hours)

Pre-requisite: Computer Graphics (COMP407)

Co-requisite: nil

Exclusion: nil

Objectives:

To provide the theoretical and practical knowledge about virtual reality technologies and the fundamental concepts involved in building and displaying virtual worlds.

Student Learning Outcomes:

Upon completion of this course, students are expected to be able to:

Category A: Professional/academic knowledge and skills
1. Understand the underlying enabling technologies of VR systems,
2. Design and create a basic virtual environment, and
3. Design an appropriate virtual reality solution for an application.

Category B: Attributes for all-roundedness
4. Learn independently.
5. Acquire teamwork and presentation skills.
6. Appreciate the importance of creativity and critical thinking, and to realize that there is no perfect virtual reality system for any particular situation and that engineers have to find "optimal" solutions, or make practical designs.
7. Develop a fuller understanding of social and community issues related to the application of virtual reality systems form case studies.

Syllabus:

1. **Introduction to Virtual Reality**
 1.1 Historical development of Virtual Reality
 1.2 The benefits of Virtual Reality
 1.3 Generic Virtual Reality Systems
 1.4 Real-time computer graphics, virtual environments: visual feedback, tactile feedback, acoustic feedback; the benefits of virtual reality.

2. **3D Computer Graphics**
 2.1 Transformations and the 3D world
 2.2 Modeling objects, dynamics objects
 2.3 Physical modeling: Constraints; Collision Detection, Surface Deformation
 2.4 Perspective Views; Stereoscopic Vision

3. **Human Factors**
 3.1 Vision and Display
 3.2 Hearing, Tactile and Equilibrium
 3.3 Health and Safety Issues

4. **VR Hardware**
 4.1 Computers: Graphics and workstation architectures
 4.2 Input Devices: Sensors and transducers, Gloves, 3D mice, 3D trackers, Navigation and Gesture Interfaces
 4.3 Output Devices: 3D Sound, Graphics; Haptic Displays, Force feedback Transducers, HMD
5. VR Software
5.1 VR Software features and web-based VR
5.2 Animation and Virtual Environment: linear and non-linear translations, angular rotation; shape and object inbetweening; free-form deformation
5.3 Modeling virtual worlds; physical simulation; VR toolkits.
5.4 Programming of Virtual Environment: Mechanics of VRML; VRML browser; creating VRML environment; 3D modelers; worldbuilding toolkits; VRML utilities.

6. VR Applications
6.1 Engineering and Industrial : CAD and CAD techniques
6.2 Training, education and simulations: Flight Simulator, Cab Simulator
6.3 Games and entertainment: PC based games, XBOX and Wii

Laboratory Experiment:
1. VR related Hardware
2. VR related Programming Tools
3. Practical VR Systems

Case Study:
1. Applications of VR/VE in Training
2. Applications of VR/VE in Entertainment
3. Applications of VR/VE in Manufacturing and Product Design
4. Applications of VR/VE in Therapy

Method of Assessment:
Continuous Assessment: 50% Examination: 50%

The continuous assessment consists of a mini-project, a number of site visit and logbook, case study report, a number of short quizzes/assignment and a mid-term test.

Textbooks:

Reference Books:
Subject Title: Computer Architecture and Systems
Subject Code: EIE414
Number of Credits: 3
Hours Assigned: Lecture/Tutorial 39 hours
Laboratory 3 hours
(Equivalent to 9 laboratory hours)

Pre-requisite: Computer System Fundamentals (EIE311)
Co-requisite: nil
Exclusion: nil

Objectives:
To provide students with
1. Concepts and design techniques of high performance computer architectures
2. Techniques to analyze performance in time domain

Student Learning Outcomes:
On successful completion of this subject, the students will be able to have:
1. An ability to apply knowledge of microprocessor appropriate to the degree discipline
2. An ability to design and conduct experiments, as well as to analyze different microprocessors
3. An ability to identify and evaluate the performance of different microprocessors.
4. An ability to write efficient programs along with understanding the limitations and mechanisms of different microprocessors
5. An ability to present their ideas and observation effectively

Syllabus:
1. Introduction to Computer Architectures
 1.1 Revision on different computer architectures: ISA and HAS, Von Neumann, RISC and CISC
 1.2 Performance issues
2. Basic Processor Designs
 2.1 Data path: Data movement
 2.2 Control path: Instruction decode and branching
 2.3 Multi-cycle Implementation
 2.4 Microprogramming
 2.5 Exception
3. Pipelined Processors
 3.1 Pipelined data-paths
 3.2 Pipelined control
 3.3 Data hazards
 3.4 Branch hazards
4. Superscalar Processing
 4.1 Parallel decoding
 4.2 Superscalar instruction issue: shelving and register renaming
 4.3 Speculative execution: preserving processor consistency
5. Branching Processing
 5.1 Branch checking
 5.2 Branch processing: delayed branching and multi-way branching
 5.3 Speculative execution: early detection and prediction
6. Cache Organization
 6.1 Cache mapping: direct mapping and associative mapping
 6.2 Replacement algorithm
 6.3 Cache miss and performance
 6.4 Cache coherence
7. Memory System
 7.1 Memory system hierarchy
 7.2 Paging
7.3 Segmentation
7.4 Virtual memory

Laboratory Experiments:
1. Superscalar simulation tool.
2. Tracing the operation of superscalar CPU by simulation.

Method of Assessment:
Continuous Assessment: 40% Examination: 60%

The continuous assessment will consist of assignments, tests and a mini-project.

Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: Distributed Systems and Network Programming
Subject Code: EIE424
Number of Credits: 3
Hours Assigned: Lecture/Tutorial 36 hours
Laboratory 6 hours
(Equivalent to 18 laboratory hours)

Pre-requisite: Principles of Programming (COMP201) or Object Oriented Design and Programming (EIE320)
Co-requisite: nil
Exclusion: nil

Objectives:
This subject will provide students with the principles and practical programming skills of developing distributed systems. It enables students to master the development skill for providing distributed services on the Web. Through a series of lab exercises, students will have the chance of developing interoperable and distributed Web applications.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the enabling technologies for building distributed systems.
2. Understand the different components for developing Web Services.
3. Set up and configure a standard Web Service system and develop simple Web Service applications.

Category B: Attributes for all-roundedness
4. Think critically.
5. Learn independently.
6. Work in a team and collaborate effectively with others.
7. Present ideas and findings effectively.

Syllabus:
1. Introduction to Distributed Systems
 1.1 Characteristics. Design goals. Architecture examples.

2. Enabling Tools and Techniques for Building Distributed Systems
 2.1 Networked Computing
 TCP/IP protocol suite. Socket programming.
 2.2 Component-based Software Development
 Component models. JavaBeans; CORBA; Remote Method Invocation (RMI); OM/DCOM; Enterprise JavaBeans (EJB).
 2.3 Extensible Markup Language (XML)
 XML Markup; parser; CDATA sections; XML namespaces. Document Type Definition (DTD); well-formed XML documents; document type declaration; element of type declarations; attribute declarations.

3. Distributed Services on the Web: Web Services
 3.1 Introduction to Web Services.
 3.2 Simple Object Access Protocol (SOAP): SOAP specification; message processing; use of namespaces.
 3.3 Web Services Description Language (WSDL): Role of WSDL in Web services, WSDL documents, remote web-services invocation using WSDL.
 3.4 Universal Description, Discovery and Integration (UDDI): role of UDDI in Web services; UDDI registries; discovery technologies.

Laboratory Experiment:
Practical Works
1. Remote Method Invocation (RMI)
2. Extensible Markup Language (XML)
3. XML-RPC
Method of Assessment:
Coursework: 40% Examination: 60%

The continuous assessment consists of assignments, laboratory reports and tests.

Textbooks:

Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: Artificial Intelligence and Computer Vision
Subject Code: EIE426

Number of Credits: 3
Hours Assigned: Lecture/Tutorial/Seminar 39 hours
Laboratory/Demonstration 3 hours
(Equivalent to 9 laboratory hours)

Pre-requisite: Object Oriented Design and Programming (EIE320)
Co-requisite: nil
Exclusion: nil

Objectives:
1. To introduce the student the major ideas, methods, and techniques of Artificial Intelligence (AI) and computer vision;
2. To develop an appreciation for various issues in the design of intelligent systems;
3. To provide the student with programming experience from implementing AI techniques, simple knowledge systems, and computer vision applications.

Student Learning Outcomes:
On successfully completing this subject, students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the benefits and limitations of current AI techniques, its culture and society impacts, and possible future development.
2. Implement major game search techniques for simple computer games.
3. Apply machine learning techniques to information processing and data mining.
4. Develop simple expert systems for internet and engineering applications.
5. Explore robotics and computer vision techniques, and their applications to entertainment and engineering domains.

Category B: Attributes for all-roundedness
6. Present ideas and findings effectively.
7. Think critically.
8. Learn independently.
9. Work in a team and collaborate effectively with others.

Syllabus:
1. Introduction
 Definitions, the Foundations of AI, the History of AI, the State of the Art.

2. Intelligent Agents
 Agents and Environments, the Concept of Rationality, the Nature of Environments, the Structure of Agents, Applications.

3. Blind and Informed Search Methods

4. Game Playing
 Games, Optimal Decisions in Games, Alpha-Beta Pruning, Imperfect Decisions, Games That Include an Element of Chance, State-of-the-Art Game Programs.

5. Knowledge Systems
 Rule-Based Deduction Systems, Rule-Based Reaction Systems, Forward and Backward Chaining, the Knowledge Engineering Process, Analysis of Typical Knowledge Systems.
6. **Machine Learning**

7. **Computer Vision**

8. **Robotics**

9. **Culture and Society Impacts**
 Understanding Intelligence: Issues and Directions, the Ethics and Risks of Developing Artificial Intelligence.

Method of Assessment:
Coursework: 45% Examination: 55%

Recommended Textbooks:

Reference Books:
Subject Title: Multimedia Communications
Subject Code: EIE428
Number of Credits: 3
Hours Assigned:
Lecture/Tutorial: 39 hours
Laboratory: 3 hours
(Equivalent to 9 laboratory hours)

Pre-requisite: Data and Computer Communications (EIE333) or **Co-requisite:** nil
Exclusion: nil
Computer Networks (EIE342)

Objectives:
To study the technical issues and system solutions for providing multimedia communications on the Internet.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the current state-of-the-art developments in Internet technologies for multimedia communications.
2. Appreciate the principles used in designing multimedia protocols, and so understand why standard protocols are designed the way that they are.
3. Understand the system design principles of multimedia communications systems.
4. Solve problems and design simple networked multimedia systems.

Category B: Attributes for all-roundedness
5. Present ideas and findings effectively.
6. Think critically.
7. Learn independently.
8. Work in a team and collaborate effectively with others.

Syllabus:
1. **Network Layer Support for Multimedia Communications**
 - IP routing, forwarding and switching: IP addressing; Routing Information Protocol (RIP) and Open Shortest Path First (OSPF) protocol; Classless Interdomain Routing (CIDR); IP forwarding, Longest Prefix Match (LPM); Label Switching; Multiprotocol Label Switching (MPLS); IP Multicast, Internet Group Management Protocol (IGMP); IPv6

2. **Transport Layer Support for Multimedia Communications**
 - Media transport protocols: Real Time Protocol (RTP) and Real Time Control Protocol (RTCP); Signaling Protocols: Session Initiation Protocol (SIP), Session Description Protocol (SDP)

3. **Quality of Services (QoS)**

4. **Multimedia Streaming Systems**
 - Streaming architecture: Real-time Streaming and On-demand Streaming, Congestion Control and Error Control, Scalable Transmission, Streaming Server Design, Buffering and Scheduling Techniques, Data Sharing Techniques, Support of Interactive Operations, Case Studies on Real Networks and Interactive TV

5. **Voice over IP (VoIP)**
 - Business model; VoIP Architecture, H.323 standards; Case Study on Enterprise VoIP applications
Laboratory Experiments:
1. Internet routing
2. Simulation study on congestion control
3. Multimedia streaming

Method of Assessment:
Continuous Assessment: 40% Examination: 60%

The continuous assessment will consist of a number of assignments, quizzes and two tests.

Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: Corporate Networking
Subject Code: EIE429
Number of Credits: 3
Hours Assigned: Lecture/tutorial 39 hours
Laboratory 3 hours
(Equivalent to 9 laboratory hours)

Pre-requisite: nil
Co-requisite: nil
Exclusion: Corporate Communication Networks (EIE439)

Objectives:
Telecommunication and computer networking technologies have been advancing rapidly in recent years. New technologies have been developed, and new economic orders have been built. Against this background, this subject is designed to:

1. Give a practical treatment on the design, implementation and management of multinational corporate networks.
2. Introduce the variety of facilities, technologies and communication systems to meet future needs of network services.
3. Discuss in details network planning, management, marketing, performance and security issues.
4. Evaluate critically the performance of existing and emerging global communication networking technologies and their impact on enterprise and world economy.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Describe the operational, marketing, functional attributes of different components of enterprise networks [1,2]
2. Evaluate critically the design, implementation, and performance of enterprise networks with regard to different criteria [1,3,4]
3. Design enterprise networking solutions by taking into account various constraints and requirements [1,2,3]

Category B: Attributes for all-roundedness
4. Develop a global outlook by recognizing the effect of advancement in communication technologies on business opportunity and world economic, social and cultural development [4]
5. Think and evaluate critically [3,4]
6. Take up new technology for life-long learning [2,4]
7. Present ideas and findings effectively [3]
8. Work in a team, and collaborate effectively with other members [4]

Syllabus:
1. Communication Networks and their Features
 Global networks, enterprise networks, private networks, network topology and optimization, network evolution strategy.
2. Protocols and Technologies
 WAN protocols, Virtual Local Area Network, IP Switching and MPLS, Metro Ethernet WAN, Voice over IP, Softswitch.
3. Network Security
4. Traffic Theory and Marketing
 Teletraffic theory, tariff and cost analysis, deregulations.
Laboratory Experiments:
1. Voice over IP experiment and softswitch.
3. LAN switching management.

Method of Assessment:
Continuous Assessment: 50% Examination: 50%

Textbook:

Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: Honours Project
Subject Code: EIE430
Number of Credits: 6
Hours Assigned: Structured Study 84 hours
Self-work/Guided Study 168 hours
Total 252 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:

Engineering is the science of applying scientific principles and technology to improve human life. This may take the form of invention, design, implementation, so on and so forth. The objective is to come up with solutions to existing problems while considering various constraints. Hence the students studying in a curriculum will be most benefited from doing a project in order to have the chance to practise hands-on application of the knowledge the student has learned throughout the curriculum, while producing something useful or valuable. Against this background, there is a final year project (FYP) component in the curriculum with the objectives:

1. To provide the opportunity to the student so that he/she can apply what he/she has learnt in previous stages in a real-life engineering context
2. To enable the student to acquire and practise project management skills and discipline while pursuing the FYP
3. To enable the student to apply engineering knowledge in analysis of problems and synthesis of solution while considering various constraints

Student Learning Outcomes:

On completion of the final year project, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand, take up, and master the basic knowledge and skills related to the specific project
2. Understand the background, the requirements, objectives, and deliverables to be produced
3. Integrate and apply knowledge learnt in present and previous stages (vertical integration) and across different subjects (horizontal integration)
4. Apply various professional skills in electronic and information engineering to achieve the objectives of the project
5. Learn to use new tools and facilities, and to gather new information, for the conduction of the project

Category B: Attributes for all-roundedness
6. Work under the guidance of a supervisor while exercising self-discipline to manage the project
7. Review critically the student’s own achievement and other related works
8. Communicate effectively with related parties (supervisor, peers, vendors)
9. Work with others (team partners, outsource company, technical support staff) collaboratively
10. Realize different constraints, and to make appropriate compromise, when designing a solution to an engineering problem
11. Disseminate effectively the results and knowledge learnt in the project
12. Transfer the knowledge and skills learnt in the project.

Syllabus:

The progression of the project will be guided by a framework, which consists of the following indicative stages. The specific details will vary from project to project.

Project Specification

In this stage, the student will work in conjunction with the project supervisor to draw up a concrete project plan specifying at least the following:
1. Background of the project
2. Aims and objectives
3. Deliverables
4. Methodology to be adopted
5. Schedule
Project Execution

This is the major part of the project. After the specification is done, the project will be pursued so that the objectives are to be met; the deliverables are to be produced in accordance with the schedule. The student and the project supervisor will meet constantly to discuss the progress. In particular the following should be demonstrated:

1. Adherence to the schedule
2. Achievement of objectives by the student’s work
3. Initiatives of the students to work, design, and to solve problems
4. Inquisitiveness of the student (e.g. to probe into different phenomena or to try different approaches)
5. Diligence of the students to spend sufficient effort on the project
6. Systematic documentation of data, design, results, …etc. during the process of working out the project

Project Report

After the project is finished, it is important that the student can be able to disseminate the results so that the results can be reviewed by others. Through this dissemination process, project achievements can be communicated, experience can be shared, knowledge and skills learnt can be retained and transferred. The following elements will be important:

1. Project log book
2. Project report (hardcopy and softcopy)
3. Presentation
4. Performance in a Question-and-Answer session

Method of Assessment:

Continuous Assessment: 100%

Reference Books:

To be specified by the project supervisor for each project.
SUBJECT DESCRIPTION FORM

Subject Title: Digital Video Production and Broadcasting

Subject Code: EIE431

Number of Credits: 3

Hours Assigned:
- Lecture/Tutorial: 39 hours
- Laboratory: 3 hours
 (Equivalent to 9 laboratory hours)

Pre-requisite: nil

Co-requisite: nil

Exclusion: nil

Objectives:
This subject provides a broad knowledge of digital video production and broadcasting.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the fundamentals of digital video systems with emphasis on production and broadcasting.
2. Work with digital video editing tools.
3. Understand the system design principles of video broadcasting
4. Design simple systems related to video broadcasting.
5. Facilitate for further development in advanced digital video production and broadcasting.

Category B: Attributes for all-roundedness
5. Think critically.

Syllabus:
1. Introduction to Video Production and Broadcasting
 Elements of a video production and broadcasting system. Video services in Hong Kong. Video production and broadcasting standards and current development.

2. Fundamental of Video Production
 Production process, pre-production, production and post-production. Digital video editing.

3. Video Production and Recording Equipments
 Digital camera and video camera, video cassette recorder (VCR), digital video recorder, storage media, VCD, DVD-video. Video player: DVD player and advanced digital video player with full VCR support.

4. Analog Video Broadcasting Standards
 Component video and composite video, NTSC, and PAL.

5. Fundamental of Digital Video Broadcasting
 Digital video coding standards, Video transport layer, and transmission layer.

6. Video Transport Layer
 MPEG-2 systems and multiplexing, programme specific information and service information.

6. Error Control for Digital Video
 Quality of service requirements for video communications. Error resilience and concealment techniques for digital video. Transport protocols for multimedia communications. Video streaming over the Internet.

7. Digital Video Broadcasting Techniques and Standards
 Channel coding for error control in digital TV, Digital modulation technique and conditional access for digital TV.
Laboratory Experiments:

1. Basic video editing tools
2. Digital video editing – visual effects
3. Digital video editing – Layering and keying clips

Method of Assessment:

Continuous Assessment: 40% Examination: 60%

The continuous assessment will consist of laboratory reports, a number of short quizzes, assignments, and tests.

Reference Books:

SUBJECT DESCRIPTION FORM

Subject Title: Web Systems and Technologies
Subject Code: EIE432 (for 42077)
Number of Credits: 3
Hours Assigned: Lecture/Tutorial 36 hours
Laboratory 6 hours
(Equivalent to 18 laboratory hours)

Pre-requisite: Information Technology (ENG224) Co-requisite: nil Exclusion: nil

Objectives:
This subject will provide students with the principles and practical programming skills of developing Internet and Web applications. It enables students to master the development skill for both client-side and server-side programming, especially for database applications. Students will have opportunity to put into practice the concepts through programming exercises based on various components of client/server web programming.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the enabling technologies for building Internet and Web database applications.
2. Understand the different components for developing client/server applications.
3. Apply the techniques and features of the client/server development languages to construct a database application based on Internet.
4. Develop the web database applications through programming exercises.

Category B: Attributes for all-roundedness
5. Present ideas and findings effectively.
6. Think critically.
7. Learn independently.

Syllabus:
1. Introduction to Client/Server Computing
 1.1 The basic principles of client/server computing; Distinguished characteristics of client/server systems and application areas; Comparison of 2 tier versus three tier client/server solutions; Web programming model; Interactive web.

2. Web Programming
 2.1 Client Side Web Programming: Benefits and limitation of client-side web programming; Byte code versus scripting. Basic concepts and development based on Java applet, Java script & dynamic HTML (DHTML).
 2.3 Web application development. Development of a web application using client-side programming, server-side programming and AJAX techniques

3. Web Database
 3.1 Introduction to Database: File and database processing systems; Definition of database; DBMS examples.
 3.2 Data Modelling: Entity relationship model; Elements of the E.R. model.
 3.3 Database Design and Implementation: Relation model; Mapping an ER model to table model; Mapping entities and attributes; Normalization; Foundations of relational implementation; Defining relational data; Relational data manipulation; Relational algebra; Structured query language; Restricting and sorting data; Displaying data from multiple tables.
 3.4 Web Database Applications: Multi-tier architecture; Principle of web database applications: store, manage and retrieve data.
4. **Security on the Web**
 4.1 Access control and passwords; cryptography; public key encryption; authentication with digital signature; packet filtering; firewalls.

Laboratory Experiments:

Practical Works:
1. Client-side web application programming.
2. Server-side web application programming.
3. Database driven web design.
4. Evaluation of commercially available database management systems.
5. Creating and managing a database.

Method of Assessment:

Coursework: 40%
Examination: 60%

The continuous assessment consists of a number of short quizzes, assignments, laboratory reports and two tests.

Text Books:

Reference Books:

SUBJECT DESCRIPTION FORM

Subject Title: Image and Audio Processing
Subject Code: EIE435
Number of Credits: 3
Hours Assigned:
 - Lecture/tutorial: 42 hours
 - Laboratory: 9 hours

Pre-requisite: Linear Systems (EIE312) or Signal Processing Fundamentals (EIE327) or Signals and Systems (EIE341)
Co-requisite: nil
Exclusion: nil

Objectives:
To provide a broad treatment of the fundamentals of image and audio processing.

Student Learning Outcomes:
1. To understand the fundamentals of image and audio signal processing and associated techniques.
2. To be able to solve practical problems with some basic image and audio signal processing techniques.
3. To be able to design simple systems for realizing some multimedia applications with some basic image and audio signal processing techniques.

Syllabus:
1. **Image processing**
 1.1 **Fundamentals of digital image:** Digital image representation and visual perception, image sampling and quantization.
 1.2 **Image enhancement:** Histogram processing; Median filtering; Low-pass filtering; High-pass filtering; Spatial filtering; Linear interpolation; Zooming.
 1.3 **Image coding and compression techniques:** Scalar and vector quantizations; Codeword assignment; Entropy coding; Transform image coding; Wavelet coding; Codec examples.
 1.4 **Image analysis and segmentation:** Feature extraction; Histogram; Edge detection; Thresholding.
 1.5 **Image representation and description:** Boundary descriptor; Chaincode; Fourier descriptor; Skeletonizing; Texture descriptor; Moments.

2. **Audio processing**
 2.1 **Fundamentals of digital audio:** Sampling; Dithering; Quantization; psychoacoustic model.
 2.2 **Basic digital audio processing techniques:** Anti-aliasing filtering; Oversampling; Analog-to-digital conversion; Dithering; Noise shaping; Digital-to-analog Conversion; Equalisation.
 2.3 **Digital Audio compression:** Critical bands; threshold of hearing; Amplitude masking; Temporal masking; Waveform coding; Perceptual coding; Coding techniques: Subband coding and Transform coding.
 2.4 **Case Study of Audio System/Codecs:** MP3; MP3-Pro; CD; MD; DVD-Audio; AC-3; Dolby digital; Surround; SRS Surround system; Digital Audio Broadcasting, etc.

Laboratory Experiments:
1. Image processing techniques
2. Image compression
3. Audio compression
4. Psychoacoustic behavior
Method of Assessment:
Continuous Assessment: 40% Examination: 60%

The continuous assessment will consist of a number of assignments, laboratory reports, and two tests.

Textbooks:

Reference Books: