1. **GENERAL INFORMATION**

1.1 Cohort of Intakes

This programme booklet is the definitive programme document for the 2005/06 cohort of intakes. At the time of publication, every effort has been made in assuring the accuracy and currency of the contents. Just in case any updated information is made available after the publication, the students are requested to refer to the following URL for the most updated information:

http://www.eie.polyu.edu.hk/prog/beng.html

Should any discrepancy between the contents of the booklet and University regulations arise, University regulations will always prevail.

1.2 Programme Information

<table>
<thead>
<tr>
<th>Title of Programme</th>
<th>Bachelor of Engineering (Honours) Degree in Electronic and Information Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Department</td>
<td>Department of Electronic and Information Engineering (EIE)</td>
</tr>
<tr>
<td>Mode of Attendance and Duration</td>
<td></td>
</tr>
<tr>
<td>Full-time mode:</td>
<td>3 years nominal, 6 years maximum</td>
</tr>
<tr>
<td>Sandwich mode:</td>
<td>4 years nominal, 7 years maximum</td>
</tr>
<tr>
<td>CES (Cooperative Education Scheme) mode:</td>
<td>3½ years nominal, 7 years maximum</td>
</tr>
<tr>
<td>Double Degree mode:</td>
<td>4 years nominal, 8 years maximum</td>
</tr>
<tr>
<td>Double Degree with Sandwich mode:</td>
<td>5 years nominal, 8 years maximum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programme Structure</th>
<th>Credit-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Credits for Graduation</td>
<td>Academic credits: 90 (for Full-time, Sandwich and CES modes) 131 (for Double Degree mode)</td>
</tr>
<tr>
<td>Training credits:</td>
<td>13 (all modes)</td>
</tr>
<tr>
<td>Work-Integrated Education Credits:</td>
<td>At least 1 (all modes)</td>
</tr>
</tbody>
</table>

Final Award:

- **Full-time, Sandwich, and CES modes:**
 - BEng(Hons) in Electronic and Information Engineering
 - 電子及資訊工程學(榮譽)工學士

- **Double Degree mode**
 - BEng(Hons) in Electronic and Information Engineering
 - 電子及資訊工程學(榮譽)工學士
 - 及
 - Bachelor of Science (Honours) in Engineering Physics
 - 工程物理學(榮譽)理學士學位
Professional Recognition

This programme satisfies the academic requirements for Corporate Membership of the Hong Kong Institution of Engineers (HKIE).
1.3 Modes of Attendance

All students entering this Programme will pursue identical study in Year 1. After Year 1, they may choose a particular mode of study according to their interest, planning, and places available. A mode of study is characterized by the credits and subjects required and the progression pattern. There are five possible modes of study, namely Full-time (FT) mode, Sandwich (SND) mode, Cooperative Education Scheme (CES) mode, Double Degree (DD) mode, and Double Degree Sandwich (DDS) mode, as follows:
Full-time mode

Under the Full-time mode, the students will normally pursue three years of study in full time and then graduate at the end of the third year after having satisfied all programme requirements.

Sandwich mode

Under the Sandwich mode, the students will pursue the first and second year of study in full time, and then engage in industrial training in the third year. During the industrial training year, the students may choose to study one subject each semester. After the industrial training year, the students will pursue the fourth year of study in full time again. Normally the students will graduate at the end of the fourth year after having satisfied all programme requirements.

Cooperative Education Scheme mode

Under the CES mode, the students will pursue the first and second year of study in full time. From Semester 3 of Year 2 up to Semester 1 of Year 4, the students will engage in industrial training while concurrently pursuing study in the University with day-release (one day leave per week) given by the employer. In the “Track 1” route of the Sandwich mode, the students will also undertake a job-related Honours project during the industrial training period. Normally the students will graduate at the end of the first semester of the fourth academic year after having satisfied all programme requirements. Should the students prefer to take the Honours project after the third year, he/she will study in the “Track 2” route and will normally graduate at the end of the fourth year.

Double Degree mode

After the first year, students may choose to embark on the Double Degree mode of study. Due to limited quota, students will be selected into the Double Degree mode according to their suitability. The normal duration of the Double Degree mode is four years. The first three years will be UGC-funded while the fourth year will be self-financed. On successful completion of the Double Degree mode of study, the students will obtain two awards, namely Bachelor of Engineering (Honours) in Electronic and Information Engineering and Bachelor of Science (Honours) in Engineering Physics.
In case the students choose to terminate their study after Year 3, they will normally obtain the Major in Electronic and Information Engineering and Minor in Engineering Physics awards, the details of which are specified in Sections 27 and 28.

Double Degree Sandwich mode

The normal duration of the Double Degree Sandwich mode is five years. The student enter the Double Degree mode of study in Year 2. After Year 2, he/she engages in industrial training for one year and then return to the Programme to study for the remaining two years to obtain the double degrees. During the industrial training year, the students may choose to study one subject each semester.

In case the students choose to terminate their study in Year 4 (i.e. the year after training), they will normally obtain the Major in Electronic and Information Engineering and Minor in Engineering Physics awards, the details of which are specified in Sections 27 and 28.

2. **AIMS AND OBJECTIVES OF THE PROGRAMME**

2.1. Programme Aims and Objectives

The followings are the aims and objectives of the Programme:

1. This programme aims at producing graduates with the professional knowledge and skills that are relevant for a professional engineer to contribute to electronic and information engineering profession.
2. The curriculum enables the students to develop a deep understanding of sound scientific principles, and to gather experience in practical applications.
3. The learning and teaching environment is flexible and relevant to support both professional and all-rounded developments of the students.
4. The graduates will be able to develop abilities in effective communication, problem-solving, inquisitiveness, critical and creative thinking, and life-long learning.
5. The graduates are expected to be equipped with professional competence, all-rounded attributes and transferable skills, and be able to meet challenges from the rapidly changing engineering profession.

2.2. Outcome Statements
On successful completion of the BEng(Hons) in Electronic and Information Engineering Programme, the student will be able to:
Category A Professional/academic knowledge and skills

1. Meet the academic requirements for Corporate Membership of the Hong Kong Institution of Engineers (HKIE).
2. Practice as a professional engineer in the field of electronic and information engineering with the necessary professional knowledge, skills, ability and attitudes.
3. Identify and apply fundamental principles in the electronic and information engineering profession.
4. Apply mathematical and scientific foundations in the electronic and information engineering profession and in further study.
5. Design solutions to real-life problems in electronic and information engineering while taking into consideration of practical constraints.
6. Recognize responsibility, ethics, and environment issues when practicing as a professional engineer in the field of electronic and information engineering.
7. Communicate effectively up to the standard required for the electronic and information engineering profession.

Category B Attributes for all roundedness

8. Have a sense of global outlook, and be able to recognize local and international technological development in electronic and information engineering.
9. Think critically and creatively.
10. Recognize social and national responsibility.
11. Pursue life-long learning and continual professional development.
12. Have a sense of entrepreneurship, and be able to recognize market needs and product development requirements in the electronic and information engineering profession.
13. Work in a team collaboratively.
14. Exercise leadership when working in a team.

3. ENTRANCE REQUIREMENTS

An applicant must satisfy both the University general minimum entrance requirements AND the programme-specific requirements, as set out below.

3.1 University General Minimum Entrance Requirements

For those applying on the basis of HKALE:
E in HKALE Chinese Literature, or E in HKALE(AS-Level) Chinese Language & Culture, or (for applicants who have not taken Chinese since Secondary Five) D in a HKCEE language other than Chinese and English; AND
E in HKALE(AS-Level) Use of English; AND
E in two other HKALE subjects, or E in one other HKALE subject and two other HKALE(AS-Level) subjects; AND
E in five HKCEE subjects.

For those applying on the basis of other local qualifications:

Diploma in Electronic and Communications Engineering or Computer and Information Engineering or Telecommunications Engineering from The Hong Kong Polytechnic University or the Hong Kong Institute of Vocational Education (IVE) – formerly the Hong Kong Technical Institute (TI) and the Hong Kong Technical College (TC), either with Credit or Pass at Merit Level in at least three Level III subjects; OR
Higher Certificate in Electronic Engineering or Electrical Engineering.

3.2 Programme-specific Entrance Requirements

For those applying on the basis of HKALE:

HKALE Grade E in Pure Mathematics or Applied Mathematics, and in Physics or Engineering Science; OR
HKALE Grade E in Pure Mathematics or Applied Mathematics, and HKALE (AS-Level) Grade E in Physics or Electronics; OR
HKALE Grade E in Physics or Engineering Science, and HKALE (AS-Level) Grade E in Applied Mathematics or Mathematics and Statistics.

For those applying on the basis of other qualifications:

A Higher Diploma in Electronic (and Information) Engineering, Electrical Engineering, or other related disciplines; OR
A Higher Certificate in Electronic and Communications Engineering, Electrical Engineering, Computer and Information Engineering, or other related disciplines; OR
A Diploma (with Credit) in Electronic and Communications Engineering, Computer and Information Engineering, or other related disciplines.
For those applying on the basis of “advanced standing” status:

- Holders of a Higher Diploma in Electronic (and Information) Engineering or Electrical Engineering may be given credit transfer for all/a majority of Year One subjects.

3.3 Admission of Advanced Standing Students Based On Advanced Academic Qualifications

(i) With approval by the Faculty, students may be admitted to the Programme at a point after the initial stage provided they have demonstrably reached the general level of educational development which would have been reached had they taken the earlier stage(s) of the Programme, and provided that there is a high probability that they will complete the Programme successfully.

(ii) Students admitted to the Programme via the above-stated admission route will be advised that based on advanced academic qualifications, they are required to take fewer subjects (of at least 30 credits less than the normal entry) than students admitted through normal entry route. Such students admitted will be given a different set of credit requirements.

(iii) Information on the number of credits required for completion for both normal entry and individual students (based on their admission qualifications) will be reflected on transcripts of study.

(iv) Students who, upon admission, wish to apply to transfer any credits from their previous studies and take fewer credits than that confirmed at the time of admission, will have to adhere to normal policy governing credit transfer.

(v) If students, admitted to credit-based programmes via the above-stated admission routes, wish to study the subject(s) again, they may approach the Department for declining the provision of taking fewer credits granted at the time of admission.

4. PROGRAMME, SUBJECTS, AND CREDITS
4.1 Programme Specified Subjects

In this programme, most subjects are of standard-size, each carrying 3 credits which are equivalent to 42 contact hours. The Honours Project carries 6 credits. The Integrated Project, English for Engineering Students, and the two General Education subjects carry two credits each. Table 4.1 lists the subjects, their credit values, and the category they belong to (Compulsory or Elective) under a particular mode of study. All subjects shown as compulsory are non-deferrable and must be taken in accordance to the progression pattern. The five modes of study are outlined in Section 1.3.

For the Full-time mode, Sandwich mode, and CES mode of study, students are required to complete 90 academic credits to satisfy the degree requirements. The subjects contributing to the 90 academic credits are listed in Table 4.1 under the respective mode of study. However, they may choose to take additional subjects beyond the basic requirements. The maximum number of credits that can be taken is 99. Please refer to Section 25 for detailed information on the requirements for graduation.

As for the Double Degree and Double Sandwich modes, the students are required to complete 131 academic credits to satisfy the double degree requirements. According to the University regulation on Double Degree, a student will be eligible for an award as soon as the credit requirements of that award are met. The subjects contributing to the BEng(Hons) in EIE award are listed in Table 4.1 under the “Double Degree, Sandwich” column. A total of 90 credits have to be earned by the student in order to meet the academic credit requirement.
Table 4.1 Subjects Category and Credits

<table>
<thead>
<tr>
<th>Subject</th>
<th>Subject Title</th>
<th>CR</th>
<th>FT, SAND, CES</th>
<th>DD, DDS</th>
<th>Major in EIE</th>
<th>Minor in EP</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF2617</td>
<td>Economics for Engineers</td>
<td>3</td>
<td>COM</td>
<td>COM*</td>
<td>COM</td>
<td>N.A.</td>
</tr>
<tr>
<td>AMA201</td>
<td>Mathematics I</td>
<td>3</td>
<td>COM</td>
<td>COM*#</td>
<td>COM</td>
<td>N.A.</td>
</tr>
<tr>
<td>AMA202</td>
<td>Mathematics II</td>
<td>3</td>
<td>COM</td>
<td>COM*</td>
<td>COM</td>
<td>N.A.</td>
</tr>
<tr>
<td>EIE211</td>
<td>Logic Design</td>
<td>3</td>
<td>COM</td>
<td>COM*</td>
<td>ELE</td>
<td>(3)</td>
</tr>
<tr>
<td>ENG224</td>
<td>Information Technology</td>
<td>3</td>
<td>COM</td>
<td>COM*</td>
<td>COM</td>
<td>(3)</td>
</tr>
<tr>
<td>ENG232</td>
<td>Engineering Science</td>
<td>3</td>
<td>COM</td>
<td>COM*</td>
<td>COM</td>
<td>N.A.</td>
</tr>
<tr>
<td>ENG236</td>
<td>Computer Programming</td>
<td>3</td>
<td>COM</td>
<td>COM*#</td>
<td>COM</td>
<td>N.A.</td>
</tr>
<tr>
<td>ENG237</td>
<td>Basic Electricity and Electronics I</td>
<td>3</td>
<td>COM</td>
<td>COM*#</td>
<td>COM</td>
<td>(3)</td>
</tr>
<tr>
<td>ENG238</td>
<td>Basic Electricity and Electronics II</td>
<td>3</td>
<td>COM</td>
<td>COM*#</td>
<td>COM</td>
<td>(3)</td>
</tr>
<tr>
<td>AMA302</td>
<td>Probability and Engineering Statistics</td>
<td>2</td>
<td>COM</td>
<td>COM*</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>EIE304</td>
<td>Electronic Circuits</td>
<td>3</td>
<td>COM</td>
<td>COM*#</td>
<td>ELE</td>
<td>(3)</td>
</tr>
<tr>
<td>EIE306</td>
<td>IC Technology and Processes</td>
<td>3</td>
<td>COM</td>
<td>COM*#</td>
<td>ELE</td>
<td>(3)</td>
</tr>
<tr>
<td>EIE311</td>
<td>Computer System Fundamentals</td>
<td>3</td>
<td>COM</td>
<td>COM*#</td>
<td>ELE</td>
<td>(3)</td>
</tr>
<tr>
<td>EIE312</td>
<td>Linear Systems</td>
<td>3</td>
<td>COM</td>
<td>COM*</td>
<td>COM</td>
<td>(3)</td>
</tr>
<tr>
<td>EIE320</td>
<td>Object-Oriented Design and Programming</td>
<td>3</td>
<td>COM</td>
<td>N.A.</td>
<td>ELE</td>
<td>N.A.</td>
</tr>
<tr>
<td>EIE322</td>
<td>Interface and Embedded Systems</td>
<td>3</td>
<td>COM</td>
<td>COM*#</td>
<td>COM</td>
<td>(3)</td>
</tr>
<tr>
<td>EIE330</td>
<td>Integrated Project</td>
<td>2</td>
<td>COM</td>
<td>COM*</td>
<td>COM</td>
<td>N.A.</td>
</tr>
<tr>
<td>EIE331</td>
<td>Communication Fundamentals</td>
<td>3</td>
<td>COM</td>
<td>COM*</td>
<td>ELE</td>
<td>(3)</td>
</tr>
<tr>
<td>EIE333</td>
<td>Data and Computer Communications</td>
<td>3</td>
<td>COM</td>
<td>ELE*</td>
<td>ELE</td>
<td>(3)</td>
</tr>
<tr>
<td>EIE338</td>
<td>Applied Electromagnetics</td>
<td>3</td>
<td>COM</td>
<td>COM*#</td>
<td>N.A.</td>
<td>(1)</td>
</tr>
<tr>
<td>EIE413</td>
<td>Digital Signal Processing</td>
<td>3</td>
<td>COM</td>
<td>ELE*</td>
<td>N.A.</td>
<td>(3)</td>
</tr>
<tr>
<td>EIE433</td>
<td>Honours Project</td>
<td>6</td>
<td>COM</td>
<td>COM*#</td>
<td>COM</td>
<td>N.A.</td>
</tr>
<tr>
<td>ENG403</td>
<td>Society and The Engineer</td>
<td>2</td>
<td>COM</td>
<td>COM*</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>ENG306</td>
<td>Engineering Management</td>
<td>3</td>
<td>COM</td>
<td>COM*#</td>
<td>COM</td>
<td>N.A.</td>
</tr>
<tr>
<td>MM2021</td>
<td>Management and Organisation</td>
<td>3</td>
<td>COM</td>
<td>COM*#</td>
<td>COM</td>
<td>N.A.</td>
</tr>
<tr>
<td>EIE305</td>
<td>Integrated Analogue and Digital Circuits</td>
<td>3</td>
<td>ELE</td>
<td>COM*</td>
<td>N.A.</td>
<td>(3)</td>
</tr>
<tr>
<td>EIE401</td>
<td>VLSI and Computer-Aided Circuit Design</td>
<td>3</td>
<td>ELE</td>
<td>ELE*</td>
<td>ELE</td>
<td>(3)</td>
</tr>
<tr>
<td>EIE402</td>
<td>Power Electronics</td>
<td>3</td>
<td>ELE</td>
<td>ELE*</td>
<td>ELE</td>
<td>(3)</td>
</tr>
<tr>
<td>EIE403</td>
<td>High Frequency Circuit Design</td>
<td>3</td>
<td>ELE</td>
<td>ELE*</td>
<td>ELE</td>
<td>(3)</td>
</tr>
<tr>
<td>EIE414</td>
<td>Computer Architecture and Systems</td>
<td>3</td>
<td>ELE</td>
<td>ELE*</td>
<td>N.A.</td>
<td>(3)</td>
</tr>
<tr>
<td>EIE415</td>
<td>Multimedia Technology</td>
<td>3</td>
<td>ELE</td>
<td>ELE*</td>
<td>ELE</td>
<td>(3)</td>
</tr>
<tr>
<td>EIE424</td>
<td>Distributed Systems and Network Programming</td>
<td>3</td>
<td>ELE</td>
<td>N.A.</td>
<td>ELE</td>
<td>N.A.</td>
</tr>
<tr>
<td>EIE425</td>
<td>Video, Image and Audio Processing</td>
<td>3</td>
<td>ELE</td>
<td>N.A.</td>
<td>ELE</td>
<td>N.A.</td>
</tr>
<tr>
<td>EIE443</td>
<td>Telecommunication Networks</td>
<td>3</td>
<td>ELE</td>
<td>N.A.</td>
<td>ELE</td>
<td>N.A.</td>
</tr>
<tr>
<td>EIE447</td>
<td>Mobile Communications</td>
<td>3</td>
<td>ELE</td>
<td>N.A.</td>
<td>ELE</td>
<td>N.A.</td>
</tr>
<tr>
<td>EIE387</td>
<td>Cooperative Education (for CES mode only)</td>
<td>P</td>
<td>WIE</td>
<td>WIE</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>EIE388</td>
<td>Industrial Training (for Sandwich mode only)</td>
<td>P</td>
<td>WIE</td>
<td>WIE</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>EIE389</td>
<td>Industrial Attachment</td>
<td>P</td>
<td>WIE</td>
<td>WIE</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>ELC3051</td>
<td>English for Engineering Students</td>
<td>2</td>
<td>ELC</td>
<td>ELC</td>
<td>ELC</td>
<td>N.A.</td>
</tr>
<tr>
<td>GEC2801</td>
<td>China Studies</td>
<td>2</td>
<td>GEC</td>
<td>GEC</td>
<td>GEC</td>
<td>N.A.</td>
</tr>
<tr>
<td>GECXXXX</td>
<td>"Broadening" GEC subject</td>
<td>2</td>
<td>GEC</td>
<td>GEC</td>
<td>GEC</td>
<td>N.A.</td>
</tr>
<tr>
<td>IC272</td>
<td>Industrial Centre Training I</td>
<td>9</td>
<td>TRN</td>
<td>TRN</td>
<td>TRN</td>
<td>N.A.</td>
</tr>
<tr>
<td>IC367</td>
<td>Industrial Centre Training II</td>
<td>4</td>
<td>TRN</td>
<td>TRN</td>
<td>TRN</td>
<td>N.A.</td>
</tr>
<tr>
<td>Subject</td>
<td>Subject Title</td>
<td>CR</td>
<td>FT, SAND, CES</td>
<td>DD, DDS</td>
<td>Major in EIE</td>
<td>Minor in EP</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----</td>
<td>---------------</td>
<td>---------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>AP200</td>
<td>Mechanics</td>
<td>3</td>
<td>N.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP201</td>
<td>Wave and Optics</td>
<td>3</td>
<td>N.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP210</td>
<td>Materials Science</td>
<td>3</td>
<td>N.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP2211</td>
<td>Physics Laboratory</td>
<td>3</td>
<td>N.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP260</td>
<td>Metals and Ceramics</td>
<td>3</td>
<td>N.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP301</td>
<td>Modern Physics I</td>
<td>3</td>
<td>N.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP3211</td>
<td>Measurement and Experimental Techniques</td>
<td>3</td>
<td>N.A.</td>
<td></td>
<td>COM#</td>
<td></td>
</tr>
<tr>
<td>AP351</td>
<td>Modern Physics II</td>
<td>3</td>
<td>N.A.</td>
<td></td>
<td>COM#</td>
<td></td>
</tr>
<tr>
<td>AP352</td>
<td>Thermal and Statistical Physics</td>
<td>3</td>
<td>N.A.</td>
<td></td>
<td>COM#</td>
<td></td>
</tr>
<tr>
<td>AP3611</td>
<td>Materials Science Laboratory</td>
<td>2</td>
<td>N.A.</td>
<td></td>
<td>COM#</td>
<td></td>
</tr>
<tr>
<td>AP401</td>
<td>Modern Optics</td>
<td>3</td>
<td>N.A.</td>
<td></td>
<td>COM#</td>
<td></td>
</tr>
<tr>
<td>AP4111</td>
<td>Electronic Materials</td>
<td>3</td>
<td>N.A.</td>
<td></td>
<td>COM#</td>
<td></td>
</tr>
<tr>
<td>AP451</td>
<td>Condensed Matter Physics</td>
<td>3</td>
<td>N.A.</td>
<td></td>
<td>COM#</td>
<td></td>
</tr>
<tr>
<td>AP4611</td>
<td>Reliability and Failure Analysis</td>
<td>3</td>
<td>N.A.</td>
<td></td>
<td>COM#</td>
<td></td>
</tr>
<tr>
<td>AP310</td>
<td>Polymers and Composites</td>
<td>3</td>
<td>N.A.</td>
<td></td>
<td>ELE#</td>
<td></td>
</tr>
<tr>
<td>AP3311</td>
<td>Computational Physics</td>
<td>3</td>
<td>N.A.</td>
<td></td>
<td>ELE#</td>
<td></td>
</tr>
<tr>
<td>AP3551</td>
<td>Applied Acoustics</td>
<td>3</td>
<td>N.A.</td>
<td></td>
<td>ELE#</td>
<td></td>
</tr>
<tr>
<td>AP4311</td>
<td>Simulations of Stochastic Processes</td>
<td>3</td>
<td>N.A.</td>
<td></td>
<td>ELE#</td>
<td></td>
</tr>
<tr>
<td>AP4711</td>
<td>Advanced Physics Laboratory</td>
<td>3</td>
<td>N.A.</td>
<td></td>
<td>ELE#</td>
<td></td>
</tr>
<tr>
<td>AP4811</td>
<td>Simulation Methods in Nonlinear Science</td>
<td>3</td>
<td>N.A.</td>
<td></td>
<td>ELE#</td>
<td></td>
</tr>
</tbody>
</table>

*Subjects counted towards BEng(Hons) in EIE award under the Double Degree mode.

#Subjects counted towards BSc(Hons) in EP award under the Double Degree mode.

(1), (2), (3) : Choose at least 6 credits from each group to minor in EP under the Double Degree mode. For details please refer to Sections 1.3 and 26.
4.2 University Language Requirements

4.2.1 Students are expected to possess the general standard of language proficiency through the secondary school education prior to their admission to the University as follows:

(i) English and Written Chinese

Students with overall grade “A” or “B” in HKALE(AS-level) Use of English and Chinese Language & Culture shall be considered as possessing the respective general standards of language proficiency, and thus shall be exempted from taking the respective Language Enhancement Programmes (LEP).

Students with overall grade “C” in HKALE(AS-level) Use of English and Chinese Language & Culture shall generally be considered as possessing the respective general standards of language proficiency. But if they possess component grade(s) lower than “C”, they shall be required to complete the respective LEP modules prescribed for them.

(ii) Putonghua

Students shall be assessed through the entrance test on Putonghua provided by CLC upon commencement of their programme of study at the University to determine if they shall be required to take the Putonghua LEP.

Students with grade “A” or “B” in HKCEE Putonghua shall be considered as possessing the general standard of Putonghua proficiency, and thus shall be exempted from taking the required Putonghua LEP.

Students with grade “C” in HKCEE Putonghua shall generally be considered as possessing the general standard of Putonghua proficiency. But they will be assessed again through the entrance test on Putonghua provided by CLC upon commencement of their programme of study to determine if they shall be required to take the Putonghua LEP.

4.2.2 Benchmarking mechanisms will be established for assessing students’ general standard of language proficiency upon admission, in order that appropriate
enhancement can be provided, where necessary, to help them achieve the desired standard upon graduation.

(ii) English and Written Chinese

HKALE (AS-level) Use of English and Chinese Language & Culture subjects shall be adopted as the benchmarking mechanisms.

Native speakers of English shall by default be given exemption. Exemption requests on other grounds shall be considered on a case-by-case basis.

(ii) Putonghua

CLC’s entrance test on Putonghua and HKCEE Putonghua subject shall be adopted as the benchmarking mechanisms for assessing students’ general levels of Putonghua proficiency upon admission.

Native speakers of Putonghua shall by default be given exemption. Exemption requests on other grounds shall be considered on a case-by-case basis.

4.2.3 To enable students to be equipped with the necessary generic language skills to pursue their studies as well as to attain the level of proficiency up to University’s desired standard, appropriate non-credit bearing enhancement programmes will be provided to students in accordance with their proficiency level as identified in the entry assessment as specified in Section 4.2.2 above.

(i) Non-credit Bearing Language Enhancement Programmes

Non-credit bearing Chinese/English Language Enhancement Programmes (LEPs) shall be prescribed and provided by CLC/ELC for individual students in respect of their proficiency levels.

Students should complete the LEPs prescribed by CLC and/or ELC before their graduation.

4.2.4 Undergraduate students will be required to undergo both Chinese and English language proficiency assessment before their graduation. In addition, final year
students are strongly recommended to take external tests such as IELTS which can help to strengthen their credentials when seeking employment.
(i) Chinese and English Language Proficiency Assessments

The PolyU-developed Graduating Students’ Language Proficiency Assessment (GSLPA) in Chinese and English shall be adopted as the required language proficiency exit tests.

Students on all UGC-funded Bachelor’s degree programmes catered for school leavers shall be required to sit for both GSLPAs before graduation. Students who have not taken both of the GSLPAs shall not be eligible for graduation.

A statement indicating a student having completed the GSLPAs shall be included in his/her academic transcript. As regards the student’s scores obtained from the GSLPAs, they shall be reported in separate test result transcripts.
5. **SPECIFIED PROGRESSION PATTERN**

For each mode of study, students are required to follow the progression pattern as stated below.

5.1 Full-time mode

<table>
<thead>
<tr>
<th>Year 1 (31 Credits)</th>
<th>Year 2 (28 Credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1 (15 credits)</td>
<td>Semester 2 (16 credits)</td>
</tr>
<tr>
<td>AMA201 Mathematics I</td>
<td>AMA202 Mathematics II</td>
</tr>
<tr>
<td>ENG237 Basic Electricity and Electronics I</td>
<td>ENG238 Basic Electricity and Electronics II</td>
</tr>
<tr>
<td>ENG232 Engineering Science</td>
<td>EIE211 Logic Design</td>
</tr>
<tr>
<td>ENG224 Information Technology</td>
<td>EIE312 Linear Systems</td>
</tr>
<tr>
<td>ENG236 Computer Programming</td>
<td>ENG236 Computer Programming</td>
</tr>
<tr>
<td>ELC3501 English for Engineering Students</td>
<td>ELC3501 English for Engineering Students</td>
</tr>
</tbody>
</table>

Whole Year: IC272 - IC Training I (9 training credits)

<table>
<thead>
<tr>
<th>Year 3 (31 Credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1 (17 credits)</td>
</tr>
<tr>
<td>EIE433 Honours Project</td>
</tr>
<tr>
<td>AF2617 Economics for Engineers</td>
</tr>
<tr>
<td>EIE Technical Elective</td>
</tr>
<tr>
<td>EIE Technical Elective</td>
</tr>
<tr>
<td>EIE Technical Elective</td>
</tr>
<tr>
<td>GEC “Broadening” subject</td>
</tr>
</tbody>
</table>
5.2 Sandwich mode

Year 1 (31 Credits)

<table>
<thead>
<tr>
<th>Semester 1 (15 credits)</th>
<th>Semester 2 (16 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMA201 Mathematics I</td>
<td>AMA202 Mathematics II</td>
</tr>
<tr>
<td>ENG237 Basic Electricity and Electronics I</td>
<td>ENG238 Basic Electricity and Electronics II</td>
</tr>
<tr>
<td>ENG232 Engineering Science</td>
<td>EIE211 Logic Design</td>
</tr>
<tr>
<td>ENG224 Information Technology</td>
<td>EIE312 Linear Systems</td>
</tr>
<tr>
<td>ENG236 Computer Programming</td>
<td>ENG236 Computer Programming</td>
</tr>
<tr>
<td>ELC3501 English for Engineering Students</td>
<td>ELC3501 English for Engineering Students</td>
</tr>
<tr>
<td></td>
<td>GEC2801 China Studies</td>
</tr>
<tr>
<td>Whole Year: IC272 - IC Training I (9 training credits)</td>
<td></td>
</tr>
</tbody>
</table>

Year 2 (28 Credits)

<table>
<thead>
<tr>
<th>Semester 1 (14 credits)</th>
<th>Semester 2 (14 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIE304 Electronic Circuits</td>
<td>EIE333 Data and Computer Communications</td>
</tr>
<tr>
<td>EIE331 Communication Fundamentals</td>
<td>EIE322 Interface and Embedded Systems</td>
</tr>
<tr>
<td>EIE311 Computer System Fundamentals</td>
<td>EIE413 Digital Signal Processing</td>
</tr>
<tr>
<td>AMA302 Probability and Engineering Statistics</td>
<td>EIE330 Integrated Project</td>
</tr>
<tr>
<td>EIE320 Object-oriented Design and Programming OR EIE306 IC Technology and Processes</td>
<td>EIE338 Applied Electromagnetics</td>
</tr>
<tr>
<td>Semester 3</td>
<td>IC Training II (4 training credits) or EIE389 Industrial Attachment</td>
</tr>
</tbody>
</table>

Year 3I (0-6 Credits) *

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIE388 Industrial Training</td>
<td>EIE388 Industrial Training</td>
</tr>
<tr>
<td>Elective – Students may take 1 elective.</td>
<td>Elective – Students may take 1 elective.</td>
</tr>
</tbody>
</table>

Year 4 (25-31 Credits) *

<table>
<thead>
<tr>
<th>Semester 1 (11-17 credits) *</th>
<th>Semester 2 (8-14 credits) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIE433 Honours Project</td>
<td>EIE433 Honours Project (cont’ d)</td>
</tr>
<tr>
<td>AF2617 Economics for Engineers</td>
<td>ENG306 Engineering Management OR MM2021 Management and Organisation</td>
</tr>
<tr>
<td>GEC “Broadening” subject</td>
<td>ENG403 Society and The Engineer</td>
</tr>
<tr>
<td>Electives – Choose 3 to 5 electives</td>
<td></td>
</tr>
</tbody>
</table>

* Total credits accumulated in Year 3I and Year 4 must be equal to 31 credits.
5.3 Cooperative Education Scheme mode - Track 1

<table>
<thead>
<tr>
<th>Year 1 (31 Credits)</th>
<th>Semester 1 (15 credits)</th>
<th>Semester 2 (16 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMA201 Mathematics I</td>
<td>AMA202 Mathematics II</td>
<td></td>
</tr>
<tr>
<td>ENG237 Basic Electricity and Electronics I</td>
<td>ENG238 Basic Electricity and Electronics II</td>
<td></td>
</tr>
<tr>
<td>ENG232 Engineering Science</td>
<td>EIE211 Logic Design</td>
<td></td>
</tr>
<tr>
<td>ENG224 Information Technology</td>
<td>EIE312 Linear Systems</td>
<td></td>
</tr>
<tr>
<td>ENG236 Computer Programming</td>
<td>ENG236 Computer Programming</td>
<td></td>
</tr>
<tr>
<td>EIE312 Linear Systems</td>
<td>ENG236 Computer Programming</td>
<td></td>
</tr>
<tr>
<td>ELC3501 English for Engineering Students</td>
<td>ELC3501 English for Engineering Students</td>
<td></td>
</tr>
<tr>
<td>GEC2801 China Studies</td>
<td>GEC2801 China Studies</td>
<td></td>
</tr>
<tr>
<td>Whole Year: IC272 - IC Training I (9 training credits)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2 (28 Credits)</th>
<th>Semester 1 (14 credits)</th>
<th>Semester 2 (14 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIE304 Electronic Circuits</td>
<td>EIE333 Data and Computer Communications</td>
<td></td>
</tr>
<tr>
<td>EIE331 Communication Fundamentals</td>
<td>EIE322 Interface and Embedded Systems</td>
<td></td>
</tr>
<tr>
<td>EIE311 Computer System Fundamentals</td>
<td>EIE413 Digital Signal Processing</td>
<td></td>
</tr>
<tr>
<td>AMA302 Probability and Engineering Statistics</td>
<td>EIE330 Integrated Project</td>
<td></td>
</tr>
<tr>
<td>EIE320 Object-oriented Design and Programming OR EIE306 IC Technology and Processes</td>
<td>EIE338 Applied Electromagnetics</td>
<td></td>
</tr>
<tr>
<td>Semester 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EIE387 Cooperative Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC Training II (4 training credits) or EIE389 Industrial Attachment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choose 2 subjects under the guidance of the Programme Leader.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| Year 3 |</p>
<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIE387 Cooperative Education (continued)</td>
<td></td>
</tr>
<tr>
<td>Choose 2 subjects under the guidance of the Programme Leader.</td>
<td></td>
</tr>
</tbody>
</table>

| Semester 3 |
| EIE387 Cooperative Education (continued) |
| Choose 1 subject under the guidance of the Programme Leader. |

| Year 4 |
| Semester 1 |
| EIE387 Cooperative Education (continued) |
| Choose 2 subjects under the guidance of the Programme Leader. |
| EIE433 Honours Project (continued) |
5.4 Cooperative Education Scheme mode – Track 2

Year 1 (31 Credits)

<table>
<thead>
<tr>
<th>Semester 1 (15 credits)</th>
<th>Semester 2 (16 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMA201 Mathematics I</td>
<td>AMA202 Mathematics II</td>
</tr>
<tr>
<td>ENG237 Basic Electricity and Electronics I</td>
<td>ENG238 Basic Electricity and Electronics II</td>
</tr>
<tr>
<td>ENG232 Engineering Science</td>
<td>EIE211 Logic Design</td>
</tr>
<tr>
<td>ENG224 Information Technology</td>
<td>EIE312 Linear Systems</td>
</tr>
<tr>
<td>ENG236 Computer Programming</td>
<td>ENG236 Computer Programming</td>
</tr>
<tr>
<td>ELC3501 English for Engineering Students</td>
<td>ELC3501 English for Engineering Students</td>
</tr>
<tr>
<td></td>
<td>GEC2801 China Studies</td>
</tr>
</tbody>
</table>

Whole Year: IC272 - IC Training I (9 training credits)

Year 2 (28 Credits)

<table>
<thead>
<tr>
<th>Semester 1 (14 credits)</th>
<th>Semester 2 (14 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIE304 Electronic Circuits</td>
<td>EIE333 Data and Computer Communications</td>
</tr>
<tr>
<td>EIE331 Communication Fundamentals</td>
<td>EIE322 Interface and Embedded Systems</td>
</tr>
<tr>
<td>EIE311 Computer System Fundamentals</td>
<td>EIE413 Digital Signal Processing</td>
</tr>
<tr>
<td>AMA302 Probability and Engineering Statistics</td>
<td>EIE330 Integrated Project</td>
</tr>
<tr>
<td>EIE320 Object-oriented Design and Programming OR EIE306 IC Technology and Processes</td>
<td>EIE338 Applied Electromagnetics</td>
</tr>
</tbody>
</table>

Semester 3

- EIE387 Cooperative Education
- IC Training II (4 training credits) or EIE389 Industrial Attachment
- Choose 2 subjects under the guidance of the Programme Leader.

Year 3

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIE387 Cooperative Education (continued)</td>
<td>Choose 2 subjects under the guidance of the Programme Leader.</td>
</tr>
</tbody>
</table>

Semester 3

- EIE387 Cooperative Education (continued)
- Choose 1 subject under the guidance of the Programme Leader.

Year 4

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIE387 Cooperative Education (continued)</td>
<td>EIE433 Honours Project (continued)</td>
</tr>
</tbody>
</table>

Choose 2 subjects under the guidance of the Programme Leader.
5.5 Double Degree mode

<table>
<thead>
<tr>
<th>Year 1 (31 Credits)</th>
<th>Year 2 (34 Credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1 (15 credits)</td>
<td>Semester 2 (16 credits)</td>
</tr>
<tr>
<td>AMA201 Mathematics I</td>
<td>AMA202 Mathematics II</td>
</tr>
<tr>
<td>ENG237 Basic Electricity and Electronics I</td>
<td>ENG238 Basic Electricity and Electronics II</td>
</tr>
<tr>
<td>ENG232 Engineering Science</td>
<td>EIE211 Logic Design</td>
</tr>
<tr>
<td>ENG224 Information Technology</td>
<td>EIE312 Linear Systems</td>
</tr>
<tr>
<td>ENG236 Computer Programming</td>
<td>ENG236 Computer Programming</td>
</tr>
<tr>
<td>EIE2351 English for Engineering Students</td>
<td>EIE23501 English for Engineering Students</td>
</tr>
<tr>
<td>EIE236 Computer Programming</td>
<td>EIE236 Computer Programming</td>
</tr>
<tr>
<td>Whole Year: IC272 - IC Training I (9 training credits)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 1 (31 Credits)</th>
<th>Year 2 (34 Credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1 (17 credits)</td>
<td>Semester 2 (17 credits)</td>
</tr>
<tr>
<td>EIE304 Electronic Circuits</td>
<td>EIE322 Interface and Embedded Systems</td>
</tr>
<tr>
<td>EIE306 IC Technology and Processes</td>
<td>EIE338 Applied Electromagnetics</td>
</tr>
<tr>
<td>EIE311 Computer System Fundamentals</td>
<td>EIE330 Integrated Project</td>
</tr>
<tr>
<td>AMA302 Probability and Engineering Statistics</td>
<td>AP351 Modern Physics II</td>
</tr>
<tr>
<td>AP200 Mechanics</td>
<td>EIE Technical Elective</td>
</tr>
<tr>
<td>AP301 Modern Physics I</td>
<td>AP Elective</td>
</tr>
</tbody>
</table>

Semester 3 IC Training II (4 training credits) or EIE389 Industrial Attachment

<table>
<thead>
<tr>
<th>Year 3 (34 Credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1 (18 credits)</td>
</tr>
<tr>
<td>EIE433 Honours Project</td>
</tr>
<tr>
<td>EIE305 Integrated Analogue and Digital Circuits</td>
</tr>
<tr>
<td>EIE331 Communication Fundamentals</td>
</tr>
<tr>
<td>AF2617 Economics for Engineers</td>
</tr>
<tr>
<td>AP210 Materials Science</td>
</tr>
<tr>
<td>AP221 Physics Laboratory</td>
</tr>
<tr>
<td>GEC “Broadening” subject</td>
</tr>
</tbody>
</table>

Year 3 (34 Credits)

<table>
<thead>
<tr>
<th>Year 4 (32 Credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1 (17 credits)</td>
</tr>
<tr>
<td>AP201 Wave and Optics</td>
</tr>
<tr>
<td>AP352 Thermal and Statistical Physics</td>
</tr>
<tr>
<td>AP361 Materials Science Laboratory</td>
</tr>
<tr>
<td>AP411 Electronic Materials</td>
</tr>
<tr>
<td>AP Elective and 1 EIE Technical Elective</td>
</tr>
</tbody>
</table>

Year 4 (32 Credits)

<table>
<thead>
<tr>
<th>Year 4 (32 Credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 2 (15 credits)</td>
</tr>
<tr>
<td>AP401 Modern Optics</td>
</tr>
<tr>
<td>AP451 Condensed Matter Physics</td>
</tr>
<tr>
<td>AP461 Reliability and Failure Analysis</td>
</tr>
<tr>
<td>EIE Technical Elective</td>
</tr>
</tbody>
</table>

Year 4 (32 Credits)
5.6 Double Degree Sandwich mode

<table>
<thead>
<tr>
<th>Year 1 (31 Credits)</th>
<th>Year 2 (32 Credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1 (15 credits)</td>
<td>Semester 2 (16 credits)</td>
</tr>
<tr>
<td>AMA201 Mathematics I</td>
<td>AMA202 Mathematics II</td>
</tr>
<tr>
<td>ENG237 Basic Electricity and Electronics I</td>
<td>ENG238 Basic Electricity and Electronics II</td>
</tr>
<tr>
<td>ENG232 Engineering Science</td>
<td>EIE211 Logic Design</td>
</tr>
<tr>
<td>ENG224 Information Technology</td>
<td>EIE312 Linear Systems</td>
</tr>
<tr>
<td>ENG236 Computer Programming</td>
<td>ENG236 Computer Programming</td>
</tr>
<tr>
<td>ELC3501 English for Engineering Students</td>
<td>ELC3501 English for Engineering Students</td>
</tr>
<tr>
<td>GEC2801 China Studies</td>
<td></td>
</tr>
<tr>
<td>Whole Year: IC272 - IC Training I (9 training credits)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2 (31 Credits)</th>
<th>Year 2 (32 Credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1 (17 credits)</td>
<td>Semester 2 (15 credits)</td>
</tr>
<tr>
<td>EIE304 Electronic Circuits</td>
<td>EIE322 Interface and Embedded Systems</td>
</tr>
<tr>
<td>EIE306 IC Technology and Processes</td>
<td>EIE338 Applied Electromagnetics</td>
</tr>
<tr>
<td>EIE311 Computer System Fundamentals</td>
<td>AP351 Modern Physics II</td>
</tr>
<tr>
<td>AMA302 Probability and Engineering Statistics</td>
<td>EIE Technical Elective</td>
</tr>
<tr>
<td>AP200 Mechanics</td>
<td>AP Elective</td>
</tr>
<tr>
<td>AP301 Modern Physics I</td>
<td></td>
</tr>
<tr>
<td>Semester 3</td>
<td>IC Training II (4 training credits) or EIE389 Industrial Attachment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3I (0-6 Credits) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1</td>
</tr>
<tr>
<td>Elective – Students may take 1 elective.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4 (25-31 Credits) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Semester 1 (11-17 credits) ***</td>
</tr>
<tr>
<td>EIE388 Industrial Training</td>
</tr>
<tr>
<td>Elective – Students may take 1 elective.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 5 (29-35 Credits) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Semester 1 (11-17 credits) ***</td>
</tr>
<tr>
<td>AP201 Wave and Optics</td>
</tr>
<tr>
<td>AP352 Thermal and Statistical Physics</td>
</tr>
<tr>
<td>AP361 Materials Science Laboratory</td>
</tr>
<tr>
<td>AF2617 Economics for Engineers</td>
</tr>
<tr>
<td>1 AP Elective and 1 EIE Technical Elective</td>
</tr>
</tbody>
</table>

* Total credits accumulated in Year 3I, Year 4 and Year 5 must be equal to 66 credits.
6. HONOURS PROJECT

The objective of the Honours Project is learning by doing. The project is intended to be a challenge to the students’ intellectual and innovative abilities and to give them the opportunities to integrate and apply the knowledge and analytical skills gained in class lectures. It should also provide students with some appreciation of the entire process of problem solving. The progress from concept to final implementation and testing, through problem definition and the selection of alternative solutions will be emphasized. Students who opt for Industrial Training may start working on their Honours Project during their sandwich year.

6.1 Project Management

To facilitate the assessment of the student’s work and to promote the ability to work independently, each student will be assigned one project under the supervision of an academic staff member, although several students may work on different aspects of a larger project. The project assignment is based on the interest of the students. Projects in collaboration with an external company are only offered to students with good GPA.

The assignment of projects is expected to be completed by the month of June preceding the beginning of the final year of study. Guidelines on the operation of the project are given in Section 6.3. The Project Management Team will review all progress and mid-sessional project reports, in particular, to sound the warning on serious slippage in schedule and on any lack of clarity in project objective. The project supervisor will be alerted so that timely advice is given to the students.

6.2 Project Assessment

At the completion of the project, the student will be required to give an oral presentation/demonstration of his/her project to an audience of fellow students, staff and industrialists. Two hardcopies and one softcopy of the final report, and the daily log-book are to be submitted at the end of the second semester. The reports go to a panel consisting of the project supervisor and one other member of staff of the Department.

Assessment of the project will be split into 3 areas:

(i) oral presentation and assessment by a panel;
(ii) work done over the project period including daily log-book; and
(iii) final report.

In order to ensure that uniform standards are being used to assess different projects by different assessors, a form for project assessment to guide the Project Panel is used. The Project Panel, which is composed of the Programme Leader, staff members from teaching sections and Project Management Team will read all reports and the respective assessment forms and thereby oversee the overall standard of the projects to ensure a reasonable degree of uniformity of assessment.

6.3 Guidelines on the Operation of the Honours Project

(i) Project Plan

Each student is required to submit a lucid, comprehensive Project Plan to his/her supervisor. This Plan may be marked, at the discretion of the supervisor, and returned to the student, who will use it as the basis of his/her project development.

The Plan should be comprehensive and brief. The following points should be considered:

- Statement of problem and objectives
- Result of literature survey conducted (if any)
- Approach to tackle the problem
- Outline design of hardware and software
- Preliminary project schedule

(ii) Daily Log-Book

Students are required to submit a daily log-book in June. The log-book should record anything that is important to your project. Typical contents include monthly summaries, notes of meetings, planning and actions, design details, experimental data and analysis, observations and remarks. The daily log-book will be reviewed, signed and dated by the supervisor(s) at least once a month.

(iii) Mid-sessional Progress Report

Students are required to prepare a mid-sessional progress report in mid December. One copy of the progress report should be submitted to the supervisor, and another one
to the General Office of the Department. This forms the basis for their supervisors to review the progress against the declared objectives, and to obviate any discrepancies if necessary.

(iv) Group and Industrial Projects

In addition to submitting reports and giving presentation at the end of the semesters, students taking group or industrial projects are required to submit progress reports in October and March.

(v) Oral Presentation

A project presentation week will be held after the final year examinations and students are required to present their projects to their classmates and staff.

(vi) Submission of Project Report

Supervisors will ensure that their project students would finish their project development such that sufficient time should be available for the students to prepare their written final reports. Two hardcopies and one softcopy of final report are required for each project.

(vii) Demonstration

Immediately after the final year examination each student has to set up a poster and/or their final products in laboratories to demonstrate their projects to students, staff and industrialists.

7. INDUSTRIAL CENTRE TRAINING

In the summer between Year 1 and Year 2, students will undergo Industrial Centre Training I in the Industrial Centre (IC). In the summer between Year 2 and Year 3, they will take Industrial Centre Training II in the Industrial Centre. In addition, they will receive 15 hours of training on Industrial Safety and 46 hours of training on Engineering Drawing and Computer Graphics. Students have to pass assessments in the practical training in order to be eligible for the award of the degree. Industrial Centre Training I carries 9 training credits and Industrial Centre Training II carries 4 training credits. They are graded in the normal manner from A+ to F and will be counted in the evaluation of the Grade Point Average (GPA). However, they will not be counted
towards the credit requirement of the award or the evaluation of the Weighted GPA. But students must pass the IC training in order to be considered for the BEng award. The IC training will be graded at the end of the Summer Terms of Year 1 and Year 2. If the assessment of an IC subject, completed in a particular academic year, cannot be done in time for the grade to be reported in the particular year, the grade will be reported during Semester One of the following academic year.

7.1 Contents of Industrial Centre Training

(i) Industrial Centre Training I

This takes place in the University’s Industrial Centre and is intended to provide students with an appreciation of the skills, techniques and technologies which are useful to the electronic and information engineering profession.

IC 0705 – Automation and Robotics

a. Introduction to industrial robots, programming and interface.

b. Introduction to electronic motion control systems, programmable logic controller, servo and stepping motors. Data communication for industrial robots.

c. Applications of sensors for automation and control. Application of electro-pneumatic components and system for automation and control.

d. Introduction to material handling devices and Automatic Storage and Retrieval System (ASRS). Introduction to Computer Integrated Manufacturing system (CIM).

IC 1101 – Basic Electronic Practice for Electronics and Information Engineering

a. Introduction to common electronics parts, use of basic test instruments, best practices and basic troubleshooting techniques, electronics workshop safety.

b. Soldering and de-soldering techniques, mounting and installation of electronic circuits, wiring of subassemblies.

c. PCB design, hands on practice on PCB circuit design in EDA.

d. Circuit artwork, etching process, PCB prototype fabrication.

e. Introduction to embedded devices, hands on embedded device programming and testing practice.

IC 1102 – Advanced Electronic Practice for Electronics and Information Engineering
b. Introduction to electronic assembly design and manufacturing process, components, tools and machines.
c. Hands-on practice on wave-soldering, SMT process, chip level wire bonding, chip-on-board encapsulation, LCD display attachment with heat seal connector.
d. Application and use of electronic test instruments: current and voltage measurements, two wire and four wire techniques, power and signal sources, oscilloscope probes, analogue and digital oscilloscopes.
e. Introduction to Virtual Instrument, application and hands-on practice on Labview or equivalent software package.

IC3003 - Basic Scientific Computing

a. Approach and techniques in using the MATLAB Development Environment.
c. Programming, M-files programming and application examples, flow control statements, function files.
d. Graphical user interface, data structures, input/output, and object-oriented capabilities.
e. Graphics, data plotting, formatting, basic printing and exporting interfaces with examples in basic scientific applications, pie chart, bar chart, area chart, linear and log plots, 3D-View plot experiment with fitting curves to data.

IC3004 - General Computer and Network Skills

a. General skills on installing software from Internet; file decompressing; general troubleshooting in PC; virus scan and cleaning; creating PDF documents, installing, upgrading, configuring, managing and troubleshooting Microsoft Windows (contemporary version).
b. Managing access to resources, system configuring and data, files and disks management.
c. Network Configuration, TCP/IP addressing, name resolution and IP routing.
d. Remote access configuring and mobile computing.
IC3007 - Web Design, Animation and Presentation

a. Create and manual edit HTML files in a typical web site with style sheets.
b. Design web pages with DREAMWEAVER using graphics, fonts, layers and interactive features with multimedia, embed Java applets and apply JavaScript onto web pages.
c. Differentiate and use appropriately different link methods. Create, upload and maintain web pages in web servers.
d. FLASH web animations using timeline and visual effects and POWERPOINT presentations.

IC3008 - Database, Spreadsheet and Graphic Illustration

a. Application of ACCESS in simple database creation, data sorting and retrieval and reporting.
b. Application of EXCEL spreadsheets for basic business and scientific analysis with charts and graph illustrations.
c. Application of ILLUSTRATOR to create simple graphics in pixel-based and vector-based formats with simple graphic rendering techniques; colour, gradient, and pattern fill.
d. Application of PHOTOSHOP with basic photo-editing techniques; selection, adjustment, transformation and masking.

(ii) Industrial Centre Training II

This takes the form of a manufacturing project, with six students in a team working under the guidance of staff members from both the Industrial Centre and from the parent department. Typically, the team is charged with planning for the manufacture of an electronic product. Students will gain experience in project control by the Critical Path Method, store management, time-study, preparation of detailed drawings and the specification of mechanical and electronic components, preparation of sequence of operation required for manufacture, electronic wiring and assembly, plant layout, and assembly line balancing.

IC1103 - Integrated project for Electronic and Information Engineering Students

The project approach of Integrated Training II provides an arena for students to develop their personal ability and attitude in teamwork and leadership in a simulated real world...
industrial environment. Projects are structured so that student can bring their training, knowledge and experience together and consolidate them into one coherent activity.

Project work is an important and integral part in the working lives that virtually all engineers will come across at various stages in their career path. These engineering projects may include software and hardware design, planning, costing, parts manufacturer, printed circuit board (PCB) and chassis assembly, testing, documentation, evaluation and presentation.

A professional engineer, particularly in the role of project leader, must have a sound appreciation of all these elements. By accomplishment of a project, students should be able to understand and appreciate the elements, difficulties and open-ended type problems and solutions which are common in their future career as a professional engineer.

The team will simulate a project team or a young company being assigned the task of design and manufacture a prototype of a consumer electronic or IT product for a client. The team has to conduct a market research to come up with an appropriate design and marketing strategy. At the end of the training period, the team has to create a Web site and present their achievement, manufacturing plan and market prospect of this product.

7.2 Assessment of Industrial Centre Training

Each basic training module taken by the student is assessed on completion of the exercise. This is normally at weekly intervals except in the case of the group project. Full details of the assessment procedures are contained in the paper, Assessment Scheme (Workshop Practice), prepared by the Industrial Centre. The salient points of the document concerning the type of activity to be assessed are:

(i) In the overall context:

(a) technical attitude as exemplified by attendance and attitude towards work assignments, rules, and safety codes;

(b) technical diary and overall report which together comprise a log book. This summarizes the work undertaken by the student in individual modules and includes an overall appraisal of the training scheme; and
(c) manufacturing project where assessment is made of the final written
report, group oral presentation, technical competence, and the
contribution of each individual.

(ii) In the context of an ‘appreciation’ of a process or skill:

(a) the measure of technical knowledge and understanding gained during
the training modules; and

(b) in some cases the acquisition of a skill where this is necessary for
better understanding.

If a student fails in a module, he/she will be required to repeat that module, normally
during the summer they were originally taken.

8. WORK-INTEGRATED EDUCATION (WIE)

8.1 In the Programme, there can be several routes or options for the students to pursue
Work-Integrated Education (WIE). These options include the Cooperative Education
Scheme (CES), Sandwich mode of study, Industrial Attachment, Preferred Graduate
Development Programme (PGDP), Industrial Projects, and other workplace training
opportunities secured by the Department or the students themselves. WIE is a
mandatory component of the programme.

8.2 Credits Requirement

By following the Faculty of Engineering’s guideline, this programme will award one WIE
training credit to the student for every two weeks’ full-time training. WIE training credits
will not be counted towards the Grade Point Average (GPA) nor the Weighted GPA
(WGPA). After assessing the student’s training performance, a Pass or a Fail grade will
be awarded to the student on his/her WIE component. Depending on the actual job and
duration, the number of training credits obtained by the students will vary. In order to
graduate from this programme, a minimum of one WIE training credit must be obtained
by the student within their period of study. Meanwhile, the maximum WIE credits will
depend on the particular mode of workplace training (CES, Sandwich, Industrial
Attachment, PDGP, Industrial Project, or other workplace training) undertaken by the
student. For instance, in the case of CES mode of study, the student will earn a
maximum of 39 WIE credits over a period of 79 weeks of full-time employment. In the
case of Sandwich training, the number of WIE credits earned over a period of 1 year full-
time employment will be 26. For the case of Industrial Attachment or Industrial Project,
normally 2 WIE credits will be earned by the student over a period of 4 weeks of workplace training. For the case of PGDP, the nominal working period is 2 months, resulting in 4 WIE credits. On the whole, under this Programme, the students might earn WIE credits in a range of 1 to 39 credits.

The WIE credits will be reflected in the Co-curricular Activities Transcript of the student, but will not be counted towards the non-credit bearing co-curricular activities as stated in Section 9.

8.3 Intended Learning Outcomes of the WIE Component(s)

Since WIE can be taken in different forms and applied to different kinds of jobs, the learning outcomes to be achieved will vary depending on the job nature and its duration engaged by the student. However, based on the experience gained from operating the CES and Sandwich modes of the Programme, WIE can bring a lot of advantages to students’ learning both in the profession-specific areas and in their all-rounded development. The intended learning outcomes of the WIE component are elaborated in the following paragraph.

On successful completion of WIE component, the students will be able to:

(i) Apply knowledge and skills learned in the Programme on the job in a broad context of engineering profession.

(ii) Recognize the operation and requirement of real-life business, thus leading to the development of entrepreneurship, global outlook, professional ethics, social and cultural understanding.

(iii) Recognize the expectation of employers, thus leading to better employability.

(iv) Develop better all-rounded attributes such as interpersonal skills and leadership.

(v) Develop critical and creative thinking, and problem-solving skills while taking into account various real-life constraints, thus leading to life-long learning and continual professional development ability.

8.4 Structure of the WIE Component(s)

WIE component under the Programme can be in many forms, namely Cooperative Education Scheme, Sandwich Training, Industrial Attachment, Industrial Project, Preferred Graduate Development Programme, and Other Job Opportunities.
8.4.1 Cooperative Education Scheme (CES)

Under this Scheme, the students engage into WIE after the second year of study in the Programme. From Semester 3 of Year 2 up to Semester 1 of Year 4, students will take up a full-time job to work with similar environment. Concurrently, they will pursue their study of the remaining curriculum through a “day-release” (the student is released from the job one day per week by the employer) arrangement. The advantage of the CES mode of WIE is that the students can engage into larger scale of projects and are assumed to bear more responsibility as a result of a fairly long period of employment (1.5 years). Furthermore, it is possible for the student to stay with the job “non-stop” after graduation.

8.4.2 Sandwich Training (including Double Degree Sandwich)

The Sandwich mode of WIE is quite similar to the CES, except that its workplace training duration is not as long as CES. After the second year of study, the students will engage into a full-time job for one year. On completion of the WIE component in the Sandwich mode, the student will return to the University to continue the study of the remaining curriculum.

8.4.3 Industrial Attachment

In the Industrial Attachment mode, students will complete 4-weeks’ workplace training during the summer after their second year of study.

8.4.4 Industrial Project

Industrial projects are Honours Projects arising from the industry. Students working on an industrial project will pursue the project in the company for a certain period of time. With the arrangement, the students will work with a real-life project and in the real working environment.

8.4.5 Preferred Graduate Development Programme (PGDP)

Under the PGDP, students will engage in a real working environment by working in a company which is a partner of the PGDP programme operated by the SAO. The
duration is usually several weeks in the summer vacation period. Such kind of training opportunity is also recognized as WIE component.

8.4.6 Other Job Opportunities

It is possible that the students themselves secure a job to work with during the summer vacation. This kind of job opportunity will be judged by the Department whether it is helpful to the students in achieving the intended learning outcomes of WIE. The students and the WIE Coordinator will work collaboratively with regard to the job selection and the subsequent training contents. Once a job is deemed appropriate as a WIE component, the students can engage into it. The Department will constantly monitor the progress. At the end of the training, an assessment will be made on the learning outcomes.

8.5 Strategies for Supporting Learning in the Workplace

The Department adopts a set of strategies to support students’ learning in the workplace. The followings are the details of the operations in different stages.

8.5.1 Preparation

The Department will actively align with the industry to get placement opportunities openings for WIE. Moreover, it is also important for the students to be fully aware of the benefits being brought about by WIE. In this regard, frequent industrial visit and employment seminars are important. The students will be asked to attend employment seminars as early as possible. Through this type of arrangement, the students in all years will be better prepared for job hunting and employment in advance. They will also realize that it is for their own benefit to be engaged in WIE and thus the students have to take an active role in completing the training.

Under the Programme requirement that a student must obtain at least one WIE training credit, each student is expected to take up job placement actively and to undergo WIE training with their best effort.

8.5.2 Operation
There will be WIE Coordinators overseeing all matters related to WIE activities under the Programme. To guide and monitor students in obtaining the WIE component, each student will be assigned an academic supervisor from the Department. The student and his/her academic supervisor will jointly plan the WIE details, such as job selection, training plan, logging of activities, reporting, and assessment. It is important to ensure that the students are fully aware of the benefits brought by WIE.

In the case that the student finds job placement(s) on his/her own, the WIE Coordinators will work with the student to design the objectives and to fix the duration of the placement(s). The academic supervisor will make frequent contacts with the student and, if appropriate, the employer to monitor the progress of the student.

8.5.3 Monitoring and assessment

Each student will be guided by his/her academic supervisor when conducting WIE training. The student’s work will also be monitored continuously and an assessment will be given when the WIE component is completed.

8.5.4 Assessment of the WIE Component(s)

The objective of assessment is to determine to what extent the student has learned through WIE. Since the actual type of work and duration will vary from student to student, an assessment framework is set out as a general guideline.

(i) Continuous Assessment

The student is required to keep a log-book to record tasks being done and things being learnt during the WIE training. The log-book is a good way for the student to reflect on his/her own work. The academic supervisor will inspect the log-book from time to time so that he/she can comment on the student’s learning as it takes place, and give close guidance.

The academic supervisor may visit the students on-the-job during the training period so that the academic supervisor and the employer will be able to discuss the student’s performance together. This will give better feedback on the student’s performance before the training is completed.

(ii) Reflective Writing
After the training is completed, the student is required to submit a final written report as a reflective writing, together with the daily-logbook, to the academic supervisor.

Through the reflective writing, the student may reflect on the training he/she has received and the objectives that have been achieved. He/She may also conduct a self-appraisal on his/her own performance.

(iii) Oral Presentation

In addition, the student is required to make an oral presentation to the students and staff. During the presentation, the student will report his/her training to the audience and answer questions from the audience.

(iv) Oral Examination

The student will be given an oral examination in which the student’s performance is assessed in light of the extent to which he/she has achieved the learning objectives.

(v) Employer Evaluation

At the end of the training period, the employer has to provide an evaluation of the student. This will enable the employer to assess the student’s on-the-job performance and all-rounded development.
(vi) Overall Assessment

Finally, an overall assessment of the student's performance can be made with the assessment components as stated in Section 8.5.4 (i) to (v). If the student meets the threshold standard, a pass grade will be given to the WIE component, otherwise a failure grade will be given and remedial action will be planned for the student.

9. CO-CURRICULAR ACTIVITIES

9.1 Students are required to participate in at least one non-credit bearing co-curricular activity in order to satisfy the overall requirement of general education before graduation.

9.2 The co-curricular activities aim at rendering additional values, and helping students to broaden their horizons and inspiring them to actualize all-round development outside the classroom.

9.3 Summer attachments, internships, mentorship programmes, community service and Work-Integrated Education activities forming part of the formal programme curricular will NOT be counted as co-curricular activities.

9.4 Activities like Complementary Studies Programme, Leadership and Competence for Success Programme, Physical Education Programmes, Personal Development Programmes, hall education programmes, pre-placement training/career training organized by SAO, seminars and lunch talks by prominent speakers/study tour/exchange activity offered/organized by the Faculty/the Department/ supporting units, cultural appreciation programme, and any other activities in a variety of forms that the Department considers essential as part of the overall requirement of general education will be counted as co-curricular activities.

9.5 Students will be considered as having fulfilled the requirement of co-curricular activities if they have participated in any one of the activities listed in Section 9.4. Students' participation in such activities will be recorded in the Co-curricular Achievement Transcript (CAT) administered by SAO.
10. PROGRAMME COMMITTEE

10.1 Composition

Chairman : Programme Leader
Members : Deputy Programme Leader
Head, Department of Electronic and Information Engineering
Subject leaders of all the disciplines included in the programme
WIE Coordinators
One student from each year of the programme

10.2 Function

(i) To act as a formal body to monitor and assess the operation of the programme;
(ii) To ensure that the programme scheme is implemented;
(iii) To ensure co-ordination between different academic units which contribute to the teaching of the programme;
(iv) To consider recommendations from the members on teaching methodology and possible modifications to the programme content.

10.3 Programme Leader and WIE Coordinators

The Programme Leader is a member of the Department responsible for the overall operation of the programme. He is assisted by an administrative assistant in the day-to-day administration. He chairs the Programme Committee and is actively involved in the teaching of the programme.

The WIE Coordinators are the academic staff members of the Department responsible for the organization and operation of WIE activities as well as Industrial Centre Training I and II.

10.4 Programme Review and Development

The Programme Committee will collect and consider, on a regular basis, the views of the students, the graduates, the departmental academic advisor, the staff, the programme team and the Advisory Committee. This will be at intervals not less than
Once every year. Of particular concern are comments on the relevance and currency of
the syllabi, the standards of the examinations, the level of staff research and
consultancy activity, the development of the programme, the adequacy of resources
and the local and world wide trends related to electronic and information engineering.
Another source of student feedback information for the teaching staff is the University’s
Student Feedback Questionnaire (SFQ) Exercise. Detailed information about the SFQ
exercise is available at the EDC website http://edc.polyu.edu.hk/sfq-student.htm.

11. “REGULAR” STUDENT, “SELF-PACED” STUDENT, AND STUDENT STATUS

11.1 Students’ eligibility for the range of services provided by the University will be governed
by the students’ status.

11.2 Students are normally expected to follow the specified progression pattern. These are
referred to as “regular” students. Those students who have been given special approval
by the Programme Leader and the Head of Department not to follow the specified
pattern are referred to as “self-paced” students.

11.3 Students who register on programmes without any specified progression pattern are
also known as self-paced students.

11.4 Self-paced students, either accelerated or decelerated, are required to seek counselling
and approval from the Programme Leader and the Head of Department.

Student status:

11.5 Students who enroll on full-time, sandwich programmes paying a fixed annual tuition fee
and on mixed-mode programmes with a study load of 9 credits or more in a semester
are classified as full-time students.

11.6 Students who enrol on full-time programmes but have been given permission to take
less than 9 credits (12 credits for students admitted before 2005/06) in a semester will
be given the option to pay credit fees. The credit fee paying students would be
classified as part-time students for that semester.
11.7 Students of full-time programmes who do not follow the specified progression pattern strictly, but who will pay the full-time flat fee, will still be recognized as full-time students.

11.8 Students who wish to change from full-time to part-time or from part-time to full-time will have to seek prior approval from Programme Leader and Head of Department before the end of the add/drop period of that semester. In all cases of change of status, approval of the Department, followed by confirmation by the AS on whether the change of student status is in order, are required.

12. SUBJECT REGISTRATION (INCLUDING ADD / DROP / WITHDRAWAL OF SUBJECTS)

12.1 A student may normally add new subjects and drop subjects during the two-week add/drop period. The addition of subjects will, however, depend on the availability of places.

12.2 Withdrawal from a subject, after the two-week add/drop period, is normally not allowed and only under special circumstances and with the approval of the Programme Leader will this be considered.

12.3 Subject to the maximum study load of 21 credits per semester and the availability of study places, students are allowed to take additional subjects on top of the prescribed credit requirement for award before graduation. For students of full-time programmes, they can take additional subjects from within or outside their programme curriculum.

12.4 The pre-requisite requirements of a subject must have been fulfilled before a student registers for that subject. However, the subject offering department has the discretion to waive the pre-requisite requirements of a subject, if deemed appropriate. If the pre-requisite subject concerned forms part of the requirements for award, the subject has to be passed in order to satisfy the graduation requirements for the programme concerned despite the waiving of the pre-requisite.

13. ZERO SUBJECT ENROLMENT

No students will be allowed to take zero subject in any semester unless they have obtained prior approval from the Programme Leader and the Head of Department and in any case not later
than the end of the add/drop period; otherwise they will be classified as having unofficially withdrawn from their programme. All semesters in which the students are allowed to take zero subject will be counted towards the maximum period of registration.
14. SUBJECT EXEMPTION

Students may be exempted from taking any specified subjects, including mandatory language or general education subjects, if they have successfully completed similar subjects previously in another programme or have demonstrated the level of proficiency/ability to the satisfaction of the subject offering department. Subject exemption is normally decided by the subject offering department (for “Broadening” GE subjects and at admission stage, the decision will be made by the programme offering department). However, for applications which are submitted by students who have completed an approved student exchange programme, the subject exemption is to be decided by the host department in consultation with the subject offering departments. If students are exempted from taking a specified subject, the credits associated with the exempted subject will not be counted towards the award requirements (except for exemptions granted at admission stage). It will therefore be necessary for the students to consult the host department and take another subject in order to satisfy the credit requirement for the award.

15. CREDIT TRANSFER

15.1 Students may be given credits for recognised previous study (including mandatory language or general education subjects) and the credits will be counted towards meeting the requirements of the award. Transferred credits may be counted towards more than one award. Credit transfer may be done with the grade carried or without the grade carried; the former should normally be used when the credits were gained from PolyU. Credit transfer with the grade carried may be granted for subjects taken from outside the University, if deemed appropriate, and with due consideration to the academic equivalence of the subjects concerned and the comparability of the grading systems adopted by the University and the other approved institutions. Subject credit transfer is normally decided by the subject offering department (for “Broadening” GE subjects, the decision will be made by the programme hosting department). However, for applications which are submitted by students who have completed an approved student exchange programme, the decision will be made by the host department in consultation with the subject offering departments. In case of disagreement between the host department and the subject offering department, the two Faculty Deans/School Board Chairman concerned will make a final decision jointly on the application.
15.2 If a particular stage of study of a student is waived on the basis of advanced qualifications held at the time of admission, the student concerned will be required to complete fewer credits for award.

15.3 Normally, not more than 50% of the normal credit requirement for the academic award may be transferable from approved institutions outside the University. For transfer of credits from programmes offered by PolyU, normally not more than 67% of the normal credit requirement for the award can be transferred. For students required to complete fewer credits for award, the exempted credits will be counted as part of the transferred credits of the normal credit requirement for award.

15.4 In the cases where both types of credits are transferred (i.e. from programmes offered by PolyU and from approved institutions outside the University), not more than 50% of the normal credit requirement for the academic award may be transferred.

15.5 The granting of credit transfer is a matter of academic judgement. In assessing the transferability of subjects previously taken, the syllabus of that subject should be carefully scrutinized to ascertain that it is comparable to the PolyU curriculum. Whether the previous study is from institutions on credit-based or non-credit-based system should not be a concern. Subject size needs not be a perfect match. To ascertain the academic standing of the institution offering the previous study, the Department might need to request the institutions concerned to provide more relevant information.

15.6 Subject offering departments (or the programme hosting department for “Broadening” GE subjects or the programme hosting department in consultation with the subject offering departments for applications which are submitted by students who have completed an approved student exchange programme) should be responsible for assessing the transferability of credits. As the application for credit transfer may involve subjects offered by more than one department, the host department should coordinate and check whether the maximum limit for credit transfer for a student has been exceeded and whether the student has fulfilled the residential requirement.

15.7 Credit transfer can be applicable to credits earned by students through study at an overseas institution and under an approved exchange programme. Students should, before they go abroad for the exchange programme, seek prior approval from the host department (who will consult the subject offering departments as appropriate) on their study plan and credit transferability. As with all other credit transfer applications, the departments concerned should scrutinise the syllabuses of the subjects which the students are going to take at the overseas institution, and determine their credit
transferability based on academic equivalence with the corresponding subjects on offer at the PolyU, and the comparability of the grading systems adopted by PolyU and the overseas institution. The transferability of credits and the suitability for allowing grades to be carried must be determined and communicated to students before they go abroad for the exchange programme. Credits thus approved for transfer will count towards the PolyU award requirement. In order to overcome the problems associated with subject-to-subject mappings and the preparation of student transcripts, this can be done on the basis of a block credit transfer rather than on a subject-by-subject basis. If the transferred credits are part of a PolyU programme which is accredited by a professional body, the department concerned should ensure that the transferred credits will also meet the requirement of the relevant professional body. Students may be given credit transfer above the existing University upper limit, subject to their satisfying the residential requirement for completing at least 1/3 of the normal credit requirement for the award under the current enrolment at PolyU.

15.8 All credit transfers approved will take effect only in the semester for which they are approved. A student who applies for transfer of credits during the re-enrolment or the add/drop period of a particular semester will only be eligible for graduation at the end of that semester, even if the granting of the credit transfer will immediately enable the student to satisfy the total credit requirement for the award.

16. DEFERMENT OF STUDY

Deferment of study is applicable to those who have a genuine need to extend the maximum period of registration. Approval from the Programme Leader and the Head of Department is required. The deferment period will not be counted as part of the maximum period of registration.

17. PRINCIPLES OF ASSESSMENT

17.1 The prime purpose of assessment is to enable students to demonstrate that they have met the aims and objectives of the academic programme, in particular that they have fulfilled the requirement of each subject and have, at the end of their study achieved the standard appropriate to the award. Appropriate methods of assessment will be employed to achieve this purpose. The assessment methods will also allow discrimination between the performance of students in each subject.
17.2 Assessment will also serve as feedback to students. Students will be informed of their performance in the assessment so that they are aware of their progress and attainment.

17.3 The ultimate authority in the University for the confirmation of academic decisions is the Senate, but for practical reasons, the Senate has delegated to the Faculty/School Boards the authority to confirm the decisions of Boards of Examiners provided these are made within the framework of the general assessment regulations within the University. Recommendations from Board of Examiners which fall outside these Regulations shall be ratified by the Academic Regulations Committee and reported to the Senate.

18. ASSESSMENT METHODS

18.1 Students’ performance in a subject shall be assessed by coursework and/or examinations and/or continuous assessment as deemed appropriate. Where both methods are used, the weighting of each in the overall subject grade is stated in the syllabi enclosed.

18.2 Coursework may include tests, assignments, projects, laboratory work, field exercises, presentations and other forms of classroom participation. The contribution made by each student in coursework involving a group effort shall be determined and assessed separately.

18.3 At the beginning of each semester, the subject teacher will inform students of the details of the methods of assessments to be used.

19. SUBJECT ASSESSMENT REVIEW PANEL (SARP)

SARP consists of the Head of the Department (as Chairman), the Programme Leader and the relevant subject examiners. SARP is responsible for monitoring the academic standard and quality of subjects and ratifying of subject grades. The Panel will review the distribution of grades within a subject and finalize the grades at the end of each semester/term before submission to the Board of Examiners. The Board of Examiners will not attempt to change any grades. Provision of reassessment is discontinued starting 2005/06, unless under very special circumstances will SARP consider granting reassessment to students.
20. **BOARD OF EXAMINERS (BoE)**

20.1 The BoE will meet at the end of each semester (except for Summer Term unless there are students who are eligible to graduate after completion of Summer Term subjects) and is responsible to the Senate for making:

(i) a decision on the classification of awards to be granted to each student on completion of the programme;

(ii) a decision on deregistration cases; and

(iii) a decision on cases with extenuating circumstance.

20.2 These decisions are made by the full BoE at the end of each semester in the light of the standard of student achievement appropriate to the award to which the programme is designed to lead, the aims of the programme, the performance on the programme in previous years, the general assessment regulations of the University and the specific programme regulations, and good practice established in the University and elsewhere.

20.3 The BoE will not attempt to change the grades for any student in any subject nor condone failures. The above decisions of the BoE, except those on award and deregistration cases which are straight forward, will be ratified by the Faculty Board. The Faculty Board may refer the decisions back to the BoE for further consideration and explanation.

20.4 Any decisions by the BoE outside the general assessment regulations of the University, supported by the Faculty Board, shall be referred to the Academic Regulations Committee for ratification. All such cases shall be reported to the Senate. Decisions by BoE outside the programme regulations but within the general assessment regulations of the University fall within the authority of the Faculty Board.

20.5 Students shall be formally notified of decisions affecting them after the BoE meeting except for those cases which require ratification of the Faculty Board. These latter students shall be formally notified of decisions after the Faculty Board’s ratification or, if a decision is outside the general assessment regulations, after the Academic Regulations Committee ratifies that decision. Any prior communication of results to these students shall be subject to formal ratification.

21. **PROGRESSION / ACADEMIC PROBATION / DEREGISTRATION**
21.1 The Board of Examiners shall, at the end of each semester (except for Summer Term unless there are students who are eligible to graduate after completion of Summer Term subjects), determine whether each student is
 (i) eligible for progression towards an award; or
 (ii) eligible for an award; or
 (iii) required to be deregistered from the programme.

21.2 When a student has a Grade Point Average (GPA) (see Section 24.3 below) lower than 2.0, he/she will be put on academic probation in the following semester. Once when a student is able to pull his GPA up to 2.0 or above at the end of the probation semester, the status of “academic probation” will be lifted. The status of “academic probation” will be reflected in the examination result notification but not in transcript of studies.

21.3 A student will have ‘progressing’ status unless he falls within the following categories, either of which may be regarded as grounds for deregistration from the programme:
 (i) the student has exceeded the maximum period of registration for that programme as specified in the definitive programme document; or
 (ii) the student’s GPA is lower than 2.0 for two consecutive semesters and his Semester GPA in the second semester is also lower than 2.0; or
 (iii) the student’s GPA is lower than 2.0 for three consecutive semesters.

21.4 The progression of students to the following academic year will not be affected by the GPA obtained in Summer Term, unless the programme enrolled falls into the category described in Section 21.5 below and otherwise specified in the definitive programme document.

21.5 Exceptions to Section 21.4 above could only be made if the Summer Term study is mandatory for all students of the programme and that the study constitutes a substantial requirement for graduation.

21.6 Notwithstanding Sections 21.3(ii) and 21.3(iii) above, a student may be deregistered from the programme enrolled before the time specified in Sections 21.3(ii) and 21.3(iii) above if his academic performance is poor to the extent that the Board of Examiners deems that his chance of attaining a GPA of 2.0 at the end of the programme is slim or impossible.

22. RETAKING OF SUBJECTS
When a student retakes a subject, no exemption will be given on coursework, examination or attendance, unless with special approval.

22.1 Normally, students may retake only those subjects for which they have failed, i.e. obtained an F grade.

22.2 Students are not allowed to retake subjects for which they have passed with grade C or above. Retaking of a subject which has been passed at grade D or D+ will require the approval of the Programme Leader.

22.3 The number of retakes of a failed subject is not restricted. Only the grade obtained in the final attempt of retaking will be included in the calculation of the Grade Point Average (GPA). (The grades obtained in previous attempts will only be reflected in transcript of studies.)

22.4 Section 22.3 above applies to the retake of the same subject only, and in cases where a student takes another subject to replace a failed subject, the fail grade will be retained and taken into account in the calculation of the GPA, despite the passing of another subject.

23. EXCEPTIONAL CIRCUMSTANCES

Absence from an assessment component

23.1 If a student is unable to complete all the assessment components of a subject due to illness or other circumstances beyond his control, and considered by the Subject Assessment Review Panel as legitimate, the Panel will determine whether the student will have to complete the assessment and, if so, by what means. This assessment shall take place before the commencement of the following academic year (except that for Summer Term, which may take place within 3 weeks from the finalisation of Summer Term results). The student will not receive a grade for the subject prior to his completion of the assessment component.

Aegrotat award

23.2 If a student is unable to complete the requirements of the programme in question for the award due to very serious illness, or other very special circumstances which are beyond
his control, and considered by the Board of Examiners as legitimate, the
Faculty/School Board will determine whether the student will be granted an aegrotat
award. Aegrotat award will be granted under very exceptional circumstances.

23.3 A student who has been offered an aegrotat award shall have the right to opt either to
accept such an award, or request to be assessed on another occasion to be stipulated
by the Board of Examiners; the student’s exercise of this option shall be irrevocable.

23.4 The acceptance of an aegrotat award by a student shall disqualify him from any
subsequent assessment for the same award.

23.5 An aegrotat award shall normally not be classified, and the award parchment shall not
state that it is an aegrotat award. However, the Board of Examiners may determine
whether the award should be classified provided that they have adequate information on
the students’ academic performance.

Other particular circumstances

23.6 A student’s particular circumstances may influence the procedures for assessment but
not the standard of performance expected in assessment.

24. GRADING

24.1 Assessment grades shall be awarded on a criterion-referenced basis. A student’s
overall performance in a subject shall be graded as follows:

<table>
<thead>
<tr>
<th>Subject grade</th>
<th>Short description</th>
<th>Elaboration on subject grading description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>Excellent</td>
<td>The student’s work is outstanding. It exceeds the subject learning outcomes in all regards.</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>The student’s work is excellent. It exceeds the subject learning outcomes in nearly all regards.</td>
</tr>
<tr>
<td>B+</td>
<td>Good</td>
<td>The student’s work is very good. It exceeds the subject learning outcomes in the majority of regards.</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>The student’s work is good. It exceeds the subject learning outcomes in some regards.</td>
</tr>
<tr>
<td>Grade</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>C+</td>
<td>Satisfactory</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>The student’s work is wholly satisfactory. It fully meets all the subject learning outcomes.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Satisfactory</td>
<td></td>
</tr>
<tr>
<td>D+</td>
<td>The student’s work is satisfactory. It largely meets all the subject learning outcomes.</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Marginal</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>The student’s work is barely adequate. It fails marginally to meet all the subject learning outcomes.</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Failure</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>The student’s work is weak. It fails to meet the subject learning outcomes in some regards.</td>
<td></td>
</tr>
</tbody>
</table>

‘F’ is a subject failure grade, whilst all others (‘D’ to ‘A+’) are subject passing grades. No credit will be earned if a subject is failed.
24.2 A numeral grade point is assigned to each subject grade, as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>4.5</td>
</tr>
<tr>
<td>A</td>
<td>4</td>
</tr>
<tr>
<td>B+</td>
<td>3.5</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>C+</td>
<td>2.5</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>D+</td>
<td>1.5</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>

24.3 At the end of each semester/term, a Grade Point Average (GPA) will be computed as follows, and based on the grade point of all the subjects:

\[
\text{GPA} = \frac{\sum \text{Subject Grade Point} \times \text{Subject Credit Value}}{\sum \text{Subject Credit Value}}
\]

where \(n \) = number of all subjects as listed in Table 4.1 under the respective mode of study (inclusive of failed subjects) taken by the student up to and including the latest semester/term, but for subjects which have been retaken, only the grade obtained in the final attempt will be included in the GPA calculation.

In addition, the following subjects will be excluded from the GPA calculation:

(i) Exempted subjects
(ii) Ungraded subjects
(iii) Incomplete subjects
(iv) Subjects for which credit transfer has been approved without any grade assigned
(v) Subjects from which a student has been allowed to withdraw (i.e. those with the grade ‘W’)

Department of Electronic and Information Engineering, The Hong Kong Polytechnic University
Subject which has been given an “S” subject code, i.e. absent from examination, will be included in the GPA calculation and will be counted as “zero” grade point. GPA is thus the unweighted cumulative average calculated for a student, for all relevant subjects taken from the start of the programme to a particular reference point of time. GPA is an indicator of overall performance and is capped at 4.0.

25. REQUIREMENTS FOR BENG(HONS) IN EIE AWARD AND BSC(HONS) IN EP AWARD

25.1 Under the Full-time, CES, and Sandwich mode, a student would be eligible for the BEng(Hons) in EIE award if he/she satisfies all the conditions listed below:
(i) Obtains a total of 90 academic credits composed of the following:
 (a) 69 credits from the subjects in the COM Category in Table 4.1.
 (b) 15 credits from the subjects in the ELE Category in Table 4.1.
 (c) 4 credits from the subjects in the GEC Category in Table 4.1.
 (d) 2 credits from the subjects in the ELC Category in Table 4.1.
(ii) Obtains a total 13 credits in the TRN Category in Table 4.1.
(iii) Satisfying the residential requirement for at least 1/3 of the credits to be completed for the award he is currently enrolled, unless the professional bodies stipulate otherwise.
(iv) Obtains at least 1 WIE credit as set out in Section 8.2. If the student studies under the CES mode, he/she must pass the subject EIE387. If the student studies under the Sandwich mode, he/she must pass the subject EIE388.
(v) Fulfills the requirement of co-curricular activities as set out in Section 9.
(vi) Achieves a GPA of 2.0 or above.
(vii) Fulfills the University language requirements as set out in Section 4.2.

25.2 Under the Double Degree and Double Degree Sandwich mode, a student would be eligible for the BEng(Hons) in EIE award if he/she satisfies all the conditions listed below:
(i) Obtains a total of 90 academic credits composed of the following:
 (a) 69 credits from the subjects in the COM* Category in Table 4.1.
 (b) 15 credits from the subjects in the ELE* Category in Table 4.1.
 (c) 4 credits from the subjects in the GEC Category in Table 4.1.
 (d) 2 credits from the subjects in the ELC Category in Table 4.1.
(ii) Obtains a total of 13 credits in the TRN Category in Table 4.1.
(iii) Satisfying the residential requirement for at least 1/3 of the credits to be completed for the award he is currently enrolled, unless the professional bodies stipulate otherwise.

(iv) Obtains at least 1 WIE credit as set out in Section 8.2. If the student studies under the Double Degree Sandwich mode, he/she must pass the subject EIE388.

(v) Fulfills the requirement of co-curricular activities as set out in Section 9.

(vi) Achieves a GPA of 2.0 or above.

(vii) Fulfills the University language requirements as set out in Section 4.2.

25.3 Under the Double Degree and Double Degree Sandwich mode, a student would be eligible for the BSc(Hons) in EP award if he/she satisfies all the conditions listed below:

(i) Obtains a total of 90 academic credits composed of the following:
 (a) 78 credits from the subjects in the COM# Category in Table 4.1.
 (b) 6 credits from the subjects in the ELE# Category in Table 4.1.
 (c) 4 credits from the subjects in the GEC Category in Table 4.1.
 (d) 2 credits from the subjects in the ELC Category in Table 4.1.

(ii) Obtains a total of 9 credits in the TRN Category in Table 4.1.

(iii) Satisfying the residential requirement for at least 1/3 of the credits to be completed for the award he is currently enrolled, unless the professional bodies stipulate otherwise.

(iv) Obtains at least 1 WIE credit as set out in Section 8.2. If the student studies under the Double Degree Sandwich mode, he/she must pass the subject EIE388.

(v) Fulfills the requirement of co-curricular activities as set out in Section 9.

(vi) Achieves a GPA of 2.0 or above.

(vii) Fulfills the University language requirements as set out in Section 4.2.

25.4 Under the Full-time, CES, and Sandwich mode, a student is required to graduate as soon as he/she satisfies all the conditions for award as set out in Section 25.1 above.

25.5 Under the Double Degree and Double Degree Sandwich mode, a student is required to graduate as soon as he/she satisfies all the conditions for the two award as set out in Section 25.2 and 25.3 above.

25.6 Under the Double Degree and Double Degree Sandwich mode, a student will be eligible for the BEng(Hons) in EIE award or the BSc(Hons) in EP award as soon as he/she
satisfies all the conditions for award as set out in Section 25.2 or 25.3 above, even though the requirements for the other award have not yet been met.

25.7 Subject to the maximum study load of 21 credits per semester, a student may take more credits than he/she needs to graduate up to a maximum of 9 credits on top of the prescribed credit requirements for his/her award in or before the semester within which he/she becomes eligible for award.

25.8 Students graduating under the Double Degree or Double Degree Sandwich mode will receive two award parchments which will be issued upon completion of the second degree. Students should claim for the degree completed if they decide not to continue with the second degree.

26. GUIDELINES FOR AWARD CLASSIFICATION

26.1 The guidelines for award classification of BEng(Hons) in EIE and BSc(Hons) in EP are stated in the following. In using these guidelines, the respective Board of Examiners shall exercise its judgement in coming to its conclusions as to the award for each student, and where appropriate, may use other relevant information.

26.2 This programme uses Weighted GPA as a guide for helping to determine award classifications.

(i) BEng(Hons) in EIE award under the Full-time, Sandwich, CES, Double Degree and Double Degree sandwich mode.

Weighted GPA will be computed as follows:

\[
\text{Weighted GPA} = \frac{\sum \text{Subject Grade Point} \times \text{Subject Credit Value} \times W_i}{\sum \text{Subject Credit Value} \times W_i}
\]

where \(W_i = 0.2 \) for all level 2 subjects, and \(W_i = 0.4 \) for all Level 3 and Level 4 subjects.
n = number of all subjects counted towards the award as listed in Table 4.1 under the respective mode of study according to the Specified Progression Pattern (Section 5) (inclusive of failed subjects) taken by the student up to and including the latest semester/term, but for subjects which have been retaken, only the grade obtained in the final attempt will be included in the GPA calculation except those exclusions specified in Section 26.3.

Same as GPA, Weighted GPA is capped at 4.0.

(ii) BSc(Hons) in EP award under the Double Degree and Double Degree sandwich mode.

\[
\text{Weighted GPA} = \frac{\sum \text{Subject Grade Point} \times \text{Subject Credit Value} \times W_i}{\sum \text{Subject Credit Value} \times W_i}
\]

where \(W_i = 0.18 \) for all level 2 subjects, and \(W_i = 0.27 \) for all Level 3 subjects, and \(W_i = 0.55 \) for all Level 4 subjects.

n = number of all subjects counted towards the award as listed in Table 4.1 under the respective mode of study according to the Specified Progression Pattern (Section 5) (inclusive of failed subjects) taken by the student up to and including the latest semester/term, but for subjects which have been retaken, only the grade obtained in the final attempt will be included in the GPA calculation except those exclusions specified in Section 26.3.

Same as GPA, Weighted GPA is capped at 4.0.

26.3 Any subjects passed after the graduation requirement has been met or subjects taken on top of the prescribed credit requirements for award shall not be taken into account in the grade point calculation for award classification. However, if a student attempts more elective subjects (or optional subjects) than the requirement for graduation in or before the semester within which he/she becomes eligible for award, the elective subjects (or optional subjects) with higher contribution (with the exception of the
additional subjects taken out of interest and not for satisfying the award requirements) shall be counted in the grade point calculation for award classification (i.e. the subjects attempted with lower contribution will be excluded from the grade point calculation for award classification), irrespective of when the excessive elective subjects (or optional subjects) are enrolled.
26.4 The followings are guidelines for Board for Examiners’ reference in determining award classifications:

<table>
<thead>
<tr>
<th>Award Classification</th>
<th>Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>The student’s performance/attainment is outstanding, and identifies him/her as exceptionally able in the field covered by the programme in question.</td>
</tr>
<tr>
<td>2nd (Division I)</td>
<td>The student has reached a standard of performance/attainment which is more than satisfactory but less than outstanding.</td>
</tr>
<tr>
<td>2nd (Division II)</td>
<td>The student has reached a standard of performance/attainment judged to be satisfactory, and clearly higher than the ‘essential minimum’ required for graduation.</td>
</tr>
<tr>
<td>3rd</td>
<td>The student has attained the ‘essential minimum’ required for graduation at a standard ranging from just adequate to just satisfactory.</td>
</tr>
</tbody>
</table>

26.5 A Pass-without-Honours degree award will be recommended only under exceptional circumstances, when the student has demonstrated a level of final attainment which is below the ‘essential minimum’ required for graduation with Honours from the programme in question, but when he has nonetheless covered the prescribed work of the programme in an adequate fashion, while failing to show sufficient evidence of the intellectual calibre expected of Honours degree graduates. For example, if a student in an Honours degree programme has a Grade Point Average (GPA) of 2.0 or more, but his Weighted GPA is less than 2.0, he may be considered for a Pass-without-Honours classification.

26.6 The following is a set of indicators, for Board of Examiners’ reference, which can be used in helping to determine award classification:

<table>
<thead>
<tr>
<th>Award Classification</th>
<th>Weighted GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>3.7- - 4</td>
</tr>
<tr>
<td>2nd (Division I)</td>
<td>3.2- - 3.7</td>
</tr>
<tr>
<td>2nd (Division II)</td>
<td>2.3- - 3.2</td>
</tr>
<tr>
<td>3rd</td>
<td>2.0 - 2.3</td>
</tr>
</tbody>
</table>
26.7 There is no requirement for the Board of Examiners to produce an award list which conforms to the guidelines in Section 26.6 above.

26.8 The honours classification of the two degrees for any student enrolled on double degree programmes need not be identical.

27. Major in Electronic and Information Engineering

27.1 Eligibility

Students will be invited in their first year of registration to indicate an irrevocable option of whether to follow a major/minor route or to continue with the single-discipline degree.

27.2 Professional Recognition

Students taking major/minor programmes may not satisfy the academic requirements for Corporate Membership of the Hong Kong Institution of Engineers (HKIE).

27.3 Major in Electronic and Information Engineering

Programme requirement

To major in EIE and minor in another discipline, a student must obtain the following:

- 41 credits from the subjects in the COM under Major Category in Table 4.1.
- 24 credits from the subjects in the ELE under Major Category in Table 4.1.
- 4 credits from the subjects in the GEC under Major Category in Table 4.1.
- 2 credits from the subjects in the ELC under Major Category in Table 4.1.
- 13 credits in the TRN under Major Category in Table 4.1.
- at least 1 WIE credit as set out in Section 8.2.

and

- fulfills the requirement of co-curricular activities as set out in Section 9.
- achieves a GPA of 2.0 or above.
- Fulfills the University Language requirement as set out in Section 4.2.

27.4 Progression Pattern
If the students choose to follow the major/minor route of study, the students will basically follow the progression pattern of either the Full-time mode or the Double Degree mode when selecting the subjects to study. In this regard, the students must consult the Programme Leader in choosing the subjects to study in a particular stage.

27.5 Eligibility for Award

Students taking the major/minor route will be considered for an award when they have satisfied the requirements for the major and minor studies and have also submitted an application for graduation. If the 18 credits (21 credits for students admitted before 2005/06) taken for the minor study meet the requirements for a specific minor, the major students may apply to graduate with a specific minor, in addition to their major. If the 18 credits (21 credits for students admitted before 2005/06) taken do not meet the requirements of any specific minor, these students will graduate with a major only. For the minor credits, at least 9 credits must be level 3 or above.

27.6 Guidelines for Award Classification (Major / Minor Programme)

(i) For students who have completed a major/minor programme or a major programme combined with free electives, their award classification will be based on both their "Major GPA" and "Minor GPA".

(ii) "Major GPA" is derived based on the subjects as set out in the COM#, ELE#, GEC, and ELC Categories in Table 4.1.

(iii) The "Major GPA" will be weighted GPA to be derived by a mechanism same as that for the GPA for award classifications of students on the single-discipline degree (see Sections 26.1 to 26.3 above).

(iv) "Minor GPA" is derived based on the 18 credits (21 credits for students admitted before 2005/06) of minor study (either a specific minor or free combination of electives). "Minor GPA" will be unweighted.

(v) The "Major GPA" and the "Minor GPA" will be presented separately to the Board of Examiners for consideration. The guidelines for determining award classification as stipulated in Sections 26.4 to 26.8 are applicable to programmes with major/minor studies.
In order to be eligible for a particular award classification, a student should have comparable standard of performance in both his major and minor studies.

In cases where the attainment of students in the minor study warrants the granting of one classification lower than that the students deserve for his major study, the Board of Examiners has the discretion to recommend the upper classification which reflects the performance on the major study better. This is based on the fact that the award parchment to be granted to students who enrol on a major programme will only reflect the award title for the major programme.

28. Minor in Engineering Physics

To minor in EP under the Double Degree or Double Degree Sandwich mode of study, a student must obtain at least 18 credits from the subjects listed in Table 4.1 under Minor in EP Category according to the following composition:

(i) at least 6 credits from the group label with (1).
(ii) at least 6 credits from the group label with (2).
(iii) at least 6 credits from the group label with (3).

29. APPEAL AGAINST ASSESSMENT RESULTS

A student may appeal against a decision of a Subject Assessment Review Panel or the BoE within 5 working days after public announcement of the examination results. The procedures for appeals against examination results are detailed in the Student Handbook.

30. SYLLABI

(Please see pages 53 to 130)

Remarks: For details about subject syllabi under the Engineering Physics programme, please refer to the corresponding programme booklet published by the Department of Applied Physics, or the URL: http://ap.polyu.edu.hk/main/APProgrammes.htm
SUBJECT DESCRIPTION FORM

Subject Title: Economics for Engineers
Subject Code: AF2617

Number of Credits: 3
Hours Assigned: Lectures 28 hours, Tutorials 14 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: Economics for Engineers (AF3901)

Role and Purpose:

This subject aims to provide students with fundamental concepts of economics/finance/costing and to develop students’ ability to analyze the economic situations by application of these concepts. It also aims to explain how these concepts can be applied to affect the functioning of an engineering company and contribute to decision making in engineering operations. It provides a foundation for related higher level subjects in economics/finance.

Objectives:

Student Learning Outcomes:

On successfully completing this subject, students will be able to:
1. Understand the fundamental concepts of microeconomics/finance and costing.
2. Develop the ability to understand economic and financial issues in reality.
3. Apply the principles of demand and supply to analyze problems in the global economy.
4. Understand the concepts of costs and revenues in business operation.
5. Assess the strategies and behaviors of firms operating under various market structures.

Teaching Approach:

There will be a lecture of two hours per week that will be structured to help students to understand engineering economics concepts. Besides, there will be an one-hour tutorial per week, for which students are required to present answers from tutorial questions and discuss relevant cases and examples relating to the subject.

Indicative Content

1. Introduction to Microeconomics
 Scarcity, Choice and Opportunity Cost; Demand, Supply and Price; Profit-maximizing Objective of a Firm; Cost and Output of a Firm; Depreciation and Cost.

2. Engineering Economic Decisions

3. Time Value of Money and Project Evaluation
 Economic Equivalence and Interest Formulas; Evaluation of Engineering Projects using Methods of Present Value, Annual Worth, and Internal Rate of Return.

4. Capital Budgeting Decision
 Methods of Financing Cost of Capital, and Evaluation of Investment Alternatives.
Method of Assessment:
Coursework: 50% Final Examination: 50%

Minimum Pass Grade:
Coursework (D)
Final Examination (D)

Textbook:

Reference Books:

Other Readings:
1. The Economist.
2. Far Eastern Economic Review.
3. Hong Kong Economic Journal.
4. Various newspaper articles.
SUBJECT DESCRIPTION FORM

<table>
<thead>
<tr>
<th>Subject Title: Mathematics I</th>
<th>Subject Code: AMA201</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Credits: 3</td>
<td>Hours Assigned:</td>
</tr>
<tr>
<td></td>
<td>Lecture/tutorial 42 hours</td>
</tr>
<tr>
<td></td>
<td>Tutorials and Student Presentations 14 hours</td>
</tr>
</tbody>
</table>

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
To introduce the students to the fundamentals of engineering mathematics. The emphasis will be on the application of mathematical methods to solving engineering problems.

Student Learning Outcomes:
Upon satisfactory completion of the subject, students are expected to be able to:

1. apply mathematical reasoning to analyse the essential features of different engineering problems;
2. extend their knowledge of mathematical and numerical techniques and adapt known solutions to different situations;
3. apply the appropriate mathematical techniques to model and solve problems in engineering;
4. develop and extrapolate the mathematical concepts in synthesizing and solving new problem;
5. search for useful information in solving problems;
6. undertake continuous learning.

Syllabus:
1. **Algebra of Complex Number**
 Complex numbers, Geometric representation, n-th roots of complex numbers.
2. **Linear Algebra**
 Matrices and determinants, vector spaces, elementary algebra of matrices, eigenvalues and eigenvectors, normalization and orthogonality.
3. **Ordinary Differential Equations**
 First and second order linear ordinary differential equations, Laplace transforms, convolution theorem, Fourier transforms.

Method of Assessment:
Continuous Assessment: 40%
Examination: 60%

Students are required to obtain Grade D or above in both the Continuous Assessment and the Examination components in order to pass this subject.

Textbooks and Reference Books:
Subject Title: Mathematics II
Number of Credits: 3
Subject Code: AMA202
Hours Assigned: Lecture/tutorial 42 hours
Tutorials and Student Presentations 14 hours
Pre-requisite: Mathematics I (AMA201) Co-requisite: nil Exclusion: nil

Objectives:
To introduce the students to the fundamentals of engineering mathematics. The emphasis will be on the application of mathematical methods in solving engineering problems.

Student Learning Outcomes:
Upon satisfactory completion of the subject, students are expected to be able to:

1. apply mathematical reasoning to analyse the essential features of different engineering problems;
2. extend their knowledge of mathematical and numerical techniques and adapt known solutions to different situations;
3. apply the appropriate mathematical techniques to model and solve problems in engineering;
4. develop and extrapolate the mathematical concepts in synthesizing and solving new problem;
5. search for useful information in solving problems;
6. undertake continuous learning.

To develop students’ ability for logical thinking and effective communication, tutorial and presentation sessions will be held.

Syllabus:
1. Calculus and Functions of Several Variables
 Infinite series, power series, Fourier series, partial differentiation, maxima and minima, Lagrange multiplier, Taylor’s theorem.
2. Partial Differential Equations
 Formulation of partial differential equations, method of separation of variables, initial and boundary value problems.
3. Vector Calculus
 Vectors, scalar and vector product, grad, div and curl operators, multiple integrals, line, surface and volume integrals, divergence theorem, Stokes’ theorem.

Method of Assessment:
Continuous Assessment: 40% Examination: 60%
Students are required to obtain Grade D or above in both the Continuous Assessment and the Examination components in order to pass this subject.

Textbooks and Reference Books:
Subject Title: Logic Design
Subject Code: EIE211
Number of Credits: 3
Hours Assigned: Lecture/tutorial 36 hours
Laboratory 6 hours
(Equivalent to 18 laboratory hours)

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
To provide students with a broad view in both hardware and software aspects of digital systems in general and microprocessor systems in particular, and enable them to gain understanding and skills that will be used in later computer related courses. Emphasis will be placed on topics such as
1. Common binary logic components found in a microcomputer system
2. Use and applications of programmable logic devices
3. Structure and organization of microprocessors
4. Basic assembly language programming techniques.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the fundamentals of digital systems and associated technologies.
2. Solve problems and design simple system related to digital logic.
3. Apply theory to practice by using logic design techniques to develop simple digital systems.
4. Appreciate the importance of creativity and critical thinking, and to realize that there is no perfect digital system for any particular situation and that engineers have to find "good" solutions, or make good designs.

Category B: Attributes for all-roundedness
5. Present ideas and findings effectively.
6. Think critically.
7. Learn independently.
8. Work in a team and collaborate effectively with others.

Syllabus:
1. Logic Circuit and ICs
 1.1 Decoders and encoders
 1.2 Multiplexers and demultiplexers
 1.3 Binary adders, binary adder-subtrators
 1.4 Binary multipliers
 1.5 HDL representation - Verilog HDL
 1.6 Sequential circuit analysis and design
 1.7 Registers and counters.
2. Memory and Programmable Logic Devices
 2.1 RAM: Write and read operations, timing waveforms, RAM integrated circuits, three-state buffers, DRAM ICs
 2.2 Programmable logic technologies
 2.3 ROM, PLA and PAL
 2.4 VLSI programmable logic devices: Xilinx FPGA.
3. Microprocessor
 3.1 Register transfer operations
 3.2 Microoperations
 3.3 Bus-based transfer
 3.4 ALU
 3.5 Shifter
 3.6 Datapath representation
3.7 Control word
3.8 Control unit
3.9 Algorithmic state machine
3.10 Hardwired control and microprogrammed control.

4. Basic Assembly Language Programming
4.1 Concepts of assembly/machine languages
4.2 Operand addressing
4.3 Addressing modes
4.4 Instruction set: Data transfer, data manipulation, program control

Laboratory Experiment:
1. Basic logic gates and their applications
2. Hardware description language
3. Programmable logic devices, Assembly language programming

Method of Assessment:
Continuous Assessment: 40% Examination: 60%

The continuous assessment will consist of a number of assignment, short quizzes, and two tests.

Textbook:

Reference Books:
SUBJECT DESCRIPTION FORM

<table>
<thead>
<tr>
<th>Subject Title: Information Technology</th>
<th>Subject Code: ENG224</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Credits: 3</td>
<td>Hours Assigned:</td>
</tr>
<tr>
<td></td>
<td>Lecture/tutorial 33 hours</td>
</tr>
<tr>
<td></td>
<td>Laboratory 6 hours</td>
</tr>
<tr>
<td></td>
<td>(Equivalent to 18 laboratory hours)</td>
</tr>
</tbody>
</table>

| Pre-requisite: nil | Co-requisite: nil | Exclusion: nil |

Objectives:

1. To provide the foundation knowledge in computer engineering, computer networking and data processing that is essential to modern information system design;
2. To provide training in using information technologies to solve practical problems in engineering.

Student Learning Outcomes:

Category A: Professional/academic knowledge and skills

1. Be able to identify different components of a computer system and understand their features.
2. Understand the basic structure and functions of a computer operating system and be able to use the services it provided for manipulating computer resources.
3. Be able to set up and configure a simple computer system.
4. Understand the basic structure and limitations of the Internet.
5. Have the ability to understand a Web document and be able to develop the client-side and the server-side programs required for a Web application.
6. Understand the basic structure of a database system and be able to set up and configure a simple database system.
7. Be able to design and develop a web-based system with database connectivity at the server side.
8. Learn to make reasonable judgment in choosing suitable technologies for the implementation of an information system.
9. Be able to identify different components and technologies used in a digital network and understand their features.
10. Be able to set up and configure a simple computer network.

Category B: Attributes for all-roundedness

11. Solving problems using systematic approaches.
12. Learn independently and be able to search for the information required in solving problems.

Syllabus:

1. **Introduction to computers and computing**
 - Evolution and applications of computers. Microprocessors – internal structure, fetch and execute cycles, instruction set, basic assembly language programming. Other major computer hardware components: Memory and I/O. Software components – applications, utilities and operating systems. Case study: Linux – background, architecture, user interfaces, file management and storage, process management. Internet and Internet services. Multi-tier Internet model. Internet programming case studies – XHTML, PHP/ASP. (13 hours)

2. **Introduction to data processing and information systems**
3. **Networking Essentials**
 Introduction to computer networking – LAN and WAN technologies, clients and servers, networking topologies. Networking models – OSI 7-layer model, IEEE 802 model. Network protocol case studies: Ethernet – cabling, topology, access methods; TCP/IP – application layer message passing, message assembling, port multiplexing, IP addressing, subnetting, routing and address resolution. Networking devices – modem, hub, bridge, switch, and router. (9 hours)

Laboratory Experiments and other Practical Work (18 hours):

1. Installation and use of Linux
2. Setting up a Web site with Apache/IIS and XHTML
3. Server-side programming with PHP/ASP
4. Database management using Microsoft Access / MySQL
5. Structured network cabling
6. Network Address Translation and IP Routing

Method of Assessment:

Continuous Assessment: 40%
Examination: 60%

The continuous assessment consists of assignments, laboratory reports and tests. The assessment criteria will be made known to the students prior to conducting the assessment.

Reference Books:

Subject Description Form

<table>
<thead>
<tr>
<th>Subject Title:</th>
<th>Engineering Science</th>
<th>Subject Code:</th>
<th>ENG232</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Credits:</td>
<td>3</td>
<td>Hours Assigned:</td>
<td>42 hours</td>
</tr>
<tr>
<td>Pre-requisite:</td>
<td>nil</td>
<td>Co-requisite:</td>
<td>nil</td>
</tr>
<tr>
<td>Exclusion:</td>
<td>nil</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objectives:
This subject aims:
1. To enable students to establish a broad knowledge base on the atomic structure and properties of materials and a few important engineering problems.
2. To enable students to understand the properties of pure substances, states, phase change, and behaviour of ideal gas.
3. To enable students to understand the forms of energy and their conversion.
4. To enable students to understand and apply the Law of Conservation of mass and Law of Conservation of energy and their applications to various kind of heat engines and heat pumps.
5. To provide a basic understanding of the manufacturing system, the relationship between material properties and manufacturing processes so that they (students) are able to select those that are appropriate taking into consideration green design and environmental issues.

Student Learning Outcomes:
1. Identify different subsystems, indicate where there is work, heat transfer and the importance of temperature, pressure and density [1, 3].
2. Given a set of properties, find the correct phase and remaining properties for a substance [2].
3. Given a physical set up, find process and compute associated heat and work transfer that is the most reasonable approximation [2, 3].
4. Given a closed thermal system, compute the heat, work transfer and change of internal energy by 1st Law of Thermodynamics[2, 3, 4].
5. Given a physical setup, formulate the ideal approximation to the behavior and compute the corresponding work and heat transfer [4, 6].
6. Given an open thermal system, compute the heat, work transfer and change of enthalpy by 1st Law of Thermodynamics[2, 3, 4].
7. Apply by 1st Law of Thermodynamics to heat engines and refrigerators[2, 3, 4].
8. To design a basic manufacturing system, to recognise the basic inputs and outputs of the system, and their importance when designing products for the consumer market [5].
9. To be able to recognise the basic processes in manufacturing, and to select those that are appropriate recognising time, quality, and cost considerations [5].
10. To be able to select appropriate materials for particular manufacturing applications, and to understand the relationship between processing and material properties taking into consideration relevant issues, particularly green design and environmental issues [5].

Syllabus:
1. **Materials Science**
 Atomic structure, wave-particle duality, bonding and crystal structures and energy levels; optical properties of materials; conductors, insulators, semi-conductors and P/N junction; stress-strain behavior, elastic properties of materials, tensile properties, and compressive, shear, and torsional deformation. (15 hours)

2. **Thermodynamics**
 Basic concepts and definitions, state, thermal properties, temperature closed and open systems, work and heat, processes and cycles. Equation of state of perfect gas and gas constant, phase (p-v-T) diagram of a pure substance, phase changes and latent heat, vapour and liquid, table of properties of pure substances. The First Law of Thermodynamics, energy and mass conservation in systems, internal energy and enthalpy, applications to closed or steady flow processes. Applications of the First Law of thermodynamics. (15 hours)

3. **Manufacturing Technology**

Laboratory Experiment:
Tensile strength of metallic and plastic materials.

Case study:
Selection of manufacturing process and material using the Cambridge Engineering Selector.

Method of Assessment:
Continuous Assessment: 40% Examination: 60%

Continuous Assessment may include assignments and short tests

Textbooks and references:
SUBJECT DESCRIPTION FORM

<table>
<thead>
<tr>
<th>Subject Title:</th>
<th>Computer Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Code:</td>
<td>ENG236</td>
</tr>
<tr>
<td>Number of Credits:</td>
<td>3</td>
</tr>
<tr>
<td>Hours Assigned:</td>
<td>Lecture/Tutorial/Laboratory 42 hours</td>
</tr>
</tbody>
</table>

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
1. To introduce the fundamental concepts of computer programming.
2. To equip students with sound skills in C/C++ programming language.
3. To equip students with techniques for developing structured computer programs.
4. To demonstrate the techniques for implementing engineering applications using computer programs.

Student Learning Outcomes:

Category A: Professional/academic knowledge and skills
After taking this subject, the students should be able to develop a good computer program using C/C++ programming language. To be specific, the students should be able to achieve the following:
1. Familiarize themselves with at least one C/C++ programming environment.
2. Be proficient in using the basic constructs of C/C++, such as variables and expressions, looping, arrays and pointers, to develop a computer program.
3. Be able to develop a structured and documented computer program.
4. Understand the fundamentals of object-oriented programming and be able to apply it in computer program development.
5. Be able to apply the computer programming techniques to solve practical engineering problems.

Category B: Attributes for all-roundedness
6. Solve problems by using systematic approaches.
7. Write technical reports and present the findings.
8. Learn team working skills.

Syllabus:

1. Introduction to programming
 Software components of a computer – Operating system, directories, files. Evolution of programming languages. Programming environment – Compiler, linker and loader. Building the first program – Hello World. (3 hours)

2. Bolts and Nuts of C/C++
 Preprocessor, program codes, functions, comments. Variables and constants. Expressions and statements. Operators. (3 hours)

3. Program Flow Control
 If, else, switch, case. Looping – for, while, do. Functions, parameters passing, return values. Local and global variables. Scope of variables. (4.5 hours)

4. Program Design and Debugging

5. Basic Object Oriented Programming
 Objects and classes. Encapsulation. Private versus public. Implementing class methods. Constructors and destructors. (4.5 hours)

6. Pointer and Array
7. **Stream I/O**
 Input and Output. Input using cin. Output using cout. File I/O using streams. (6 hours)

8. **Using C/C++ in Engineering Applications**
 Solving numerical problems using C/C++. Developing graphical user interfaces for Engineering applications. Control I/O devices using C/C++. (7.5 hours)

Method of Assessment:

Continuous Assessment: 100%

Textbook:

Reference Book:

SUBJECT DESCRIPTION FORM

<table>
<thead>
<tr>
<th>Subject Title:</th>
<th>Basic Electricity and Electronics I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Code:</td>
<td>ENG237</td>
</tr>
<tr>
<td>Number of Credits:</td>
<td>3</td>
</tr>
<tr>
<td>Hours Assigned:</td>
<td>Lecture/Tutorial 42 hours</td>
</tr>
<tr>
<td></td>
<td>Laboratory 15 hours</td>
</tr>
</tbody>
</table>

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
1. Introduce the fundamental concepts of electrical and electronics principles and components applicable to all engineering students.
2. Develop an ability for solving problems involving electrical and electronics circuits.
3. Provide experimentation on electrical and electronic circuits.
4. Impart the skills and knowledge required for independent learning.

Student Learning Outcomes:
Upon satisfactory completion of the subject, the students are expected to:
1. Have acquired a good understanding of the electrical and electronics principles.
2. Be able to solve problems in electrical and electronic circuits;
3. Use suitable instrumentation to carry out experimental investigations to validate the theoretical investigations;
4. Learn to search for useful information in solving problems;
5. Be able to carry out independent investigation in an improvised environment.

Syllabus:

1. **DC Circuits**
 Circuit components, Kirchhoff’s laws, Loop & nodal analysis, Thevenin and Norton theorems, Capacitance and inductance, Independent and dependent sources, Source transformation, Instantaneous power, Source loading and maximum power transfer. (6 hours)

2. **AC Circuits**
 Average and rms values, Phasors, Steady-state analysis, Impedance, Admittance, Network theorems, Real and reactive power, power factor. (6 hours)

3. **Basic Electromechanics**
 Electric and magnetic fields, Faraday’s Law, Self and mutual inductance, Transformer, Basic ac generator, Three-phase voltage generation, Three-phase power, Introduction to electric motors. (6 hours)

4. **Time-Domain in Analysis**
 Transient analysis, RC, RL and RLC circuits, Initial and final conditions, Laplace transform, Time domain solution by Laplace transform, Impulse and step responses of first-and second-order systems. (9 hours)

5. **Basic Diode Circuits**
 I-V characteristics of ideal diodes, Practical diode circuits such as rectifier circuits, clipping and clamping circuits. (3 hours)

6. **Basic Amplifier Circuits**
 Ideal amplifier characteristics, ideal operational amplifier, Op-amp applications: inverting, non-inverting, summing and difference circuits. (3 hours)

7. **Digital Logic Circuits**
 Binary number system: addition, subtraction, multiplication and division in binary number systems, Conversion between binary and decimal numbers, Two’s complement, Boolean algebra, Basic logic gates, Flip-flops, Karnaugh maps, Don’t care condition, Combinational Logic circuit designs and modules. (9 hours)
Laboratory Experiments: (15 hours, 3 hours each)
1. Introduction to Laboratory instrumentation
2. Thevénin and Norton theorems
3. Time dependent circuit analysis
4. Simple op-amp circuits
5. Simple digital circuits

Method of Assessment:
Continuous Assessment: 40% Examination: 60%

Textbook:

Reference Books:
SUBJECT DESCRIPTION FORM

<table>
<thead>
<tr>
<th>Subject Title: Basic Electricity and Electronics II</th>
<th>Subject Code: ENG238</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Credits: 3</td>
<td>Hours Assigned:</td>
</tr>
<tr>
<td></td>
<td>Lecture/tutorial 42 hours</td>
</tr>
<tr>
<td></td>
<td>Laboratory 12 hours</td>
</tr>
</tbody>
</table>

Pre-requisite: Basic Electricity and Electronics I (ENG237) Co-requisite: nil Exclusion: nil

Objectives:
To introduce students to the operating principles of electrical machines and electronic circuits. Several classes of electronic circuits will be covered in this subject – diode circuits, BJT transistor circuits, FET transistor circuits, and operational amplifier circuits. The fundamentals of power electronics and simple electric machines will also be introduced.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

1. Understand basic pn junction characteristics, load line concept and the design of basic diode circuits;
2. Understand fundamentals of DC biasing of BJT and FET circuits;
3. Understand the basic operation principles of BJT and FET transistor circuits and design;
4. Understand the basic operation principles of operational amplifiers;
5. Understand the basic frequency response of amplifiers;
6. Understand the basic principles of power electronics and operating principles of dc, stepping and servo motors.
7. Develop their application skills by doing laboratory experiments.

Syllabus:
1. Operational Amplifiers
 Integrator and differentiator circuits; analog computers; instrumentation amplifiers; current-to-voltage and voltage-to-current converters; non-ideal op-amp characteristics.

2. Diode Fundamentals
 p-n junction basics; various I-V characteristics of diodes; circuit models for non-ideal semiconductor diodes; load line concept.

3. Transistor Fundamentals
 The bipolar junction transistors (BJT); DC biasing and analysis of BJT circuits; MOS field-effect transistors (MOSFET); junction field effect transistors (JFET); load line and graphical large-signal analysis; transistor amplification concept.

4. Amplifier Circuit Design
 Analog signals and linear transistor amplifiers; basic BJT and MOSFET amplifier configurations; small-signal parameters; voltage and current gains evaluation; input and output impedances, transconductance.

5. Frequency Domain Analysis
 Exponential excitations; s-domain; applications to circuits; RC/RL filters.

6. Frequency Response of Amplifiers
 Equivalent circuits; cut-off frequency; unity-gain bandwidth; system transfer functions, Bode plots; short-circuit and open-circuit time constants; frequency response of amplifiers with coupling; by pass capacitors.

7. Introduction to Electrical Machines
 Star and Delta connections; measuring three-phase power; two-wattmeter method, DC motors; stepping and servo motors; selection criteria of stepping motor and servo motor; basic power electronics.
Laboratory Experiments:
1. Op-amps as analog computers and as current-to-voltage converters.
2. DC transistor biasing/load line and diode clamping circuits.
3. Transistor amplifier circuits.
4. Three phase system.

Method of Assessment:
Continuous Assessment: 40% Examination: 60%

The continuous assessment will consist of a number of assignments and tests.

Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: China Studies
Subject Code: GEC2801
Number of Credits: 2
Hours Assigned: Lecture 28 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Role and Purpose:
The objective of this subject is to arouse students’ interest in pursuing an understanding of China and to help students acquire a broad-based knowledge about China.

Learning Outcomes:
Upon completion of the subject, students shall be able to develop interest in:
1. the understanding of China, including its culture, legal system, social and political institutions, economy and business, science and technology, etc.;
2. the relationship and linkage of the past and the present Chinese Mainland; and
3. the latest development and trends of the Mainland that shape the future of China.

Teaching/Learning Approach:
The teaching purpose is to provide students with some overall threads about the aspects of development or institutions of the Mainland. The aim is to present a framework for analysis and understanding as well as some learning guidelines on the topic for the students to go on learning after the lectures. The starting point for the lectures is the present, from which students will be introduced to the historical evolution that has shaped the present and upon which students may be helped to learn about the various factors that would affect the future and how the future might unfold under the interplay of these factors.

Learning should mean thinking, not force feeding of facts and information. Students will not be required to do prerequisite reading, but after the lectures they are encouraged to pursue the topic further by the help of the reference lists and more importantly by the use of relevant web-sites of databanks on the topics. During the lectures, time will be reserved, as an integral part of the lectures, for interaction between students and lectures through Q & A.

Indicative Content:
The subject will have 10 theme lectures, each for 4 hours, as follows:

Theme 1: Recent Development of Chinese Economy 中國經濟最新發展
Theme 2: Business Environment in China 中國商貿環境
Theme 3: Economic Geography of China 中國經濟地理
Theme 4: Legal System and Laws of the PRC 中國法律體制
Theme 5: Political System and Institutions of the PRC 中國政治制度及組織架構
Theme 6: Science and Technology in China 中國科技發展
Theme 7: Contemporary Chinese Society 當代中國社會
Theme 8: Topics in Chinese Traditional Culture 中國傳統文化 – including but not limited to:
 a. Architecture and Design 建築及設計
 b. Food and Cuisines 飲食文化
Theme 9: Evolution of Chinese Characters 漢字演變
Theme 10: Chinese Philosophy: Confucianism, Buddhism, and Taoism 中國哲學：儒釋道

(Note 1: For Theme 8, students need to choose either 8a or 8b for submission of the reflective writing/worksheet. Only one of them will be counted towards the minimum 5 submissions.)
Method of Assessment:
To complete the subject, students are required to:
1. achieve at least 70% attendance, that means to complete at least 5 out of the 7 theme lectures selected;
2. submit and pass a brief reflective writing or pass a quiz, for each of these 5 themes lectures (see Note 1 below); and
3. submit an essay (about 2,500 characters for essay written in Chinese) on one selected theme at the end of the semester and get a pass.

Grading: Pass/Fail

Learning Support:
1. General Education Centre's Project Room (located at A529)
2. Online resources database accessible via PolyU campus network
Subject Title: Industrial Centre Training I
Subject Code: IC272
Number of Credits: 9 training credits
Hours Assigned: 9 weeks
(Refer to Training Pattern)

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
Industrial Centre Training I is offered by The Hong Kong Polytechnic University Industrial Centre. The objective of the subject is to equip students with practical skills, techniques and technologies which are general and essential in the practice of electronic and information engineering (EIE). The training comprised of three parts: technology training, engineering graphic communication and industrial safety.

1. Technology training provides training in engineering practice in electronic and information engineering. Students should be able to acquire fundamental knowledge in electronic product design and prototype fabrication with an appreciation of electronic product manufacturing process and practise. On completion of the engineering practice, student should be able to handle projects and fabricate prototype for electronic design and development. Furthermore, students also receive training in fundamental practical skills in different types of computer software that is essential in engineering, which include computer operating systems, client-server operation, data networking, basic scientific computing, computer graphics and animations, Web authoring and Internet search, database and spreadsheets.

2. Engineering graphic communication provides an opportunity for student to learn and use technical graphics as a media to express ideas and describe objects. The emphasis is put on practicing the principle and interpretation of technical drawing and to communicate design idea using simple sketch and computer graphics. In addition to computer based technical graphics, students are expected to be familiar with using electronic design automation (EDA) software to capture and design electronic circuit boards and comprehend different types of electrical drawings that are frequently encountered in electronic and electrical engineering.

3. Industrial Safety provides students with an understanding of industrial hazards and their control in practicing engineering in industry.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Acquire practical professional skills and best practice in electronic and information engineering for application on the design, construction, operation and maintenance of electronic and information equipment and system.
2. Acquire fundamentals in using commercial available software to solve problems.
3. Demonstrate technical competence in handing electronic projects and produce prototypes for design and development.
4. Understand the importance of safety, responsibility and regulation in the practice of engineering.
5. Application of fundamental principles in electronic and information engineering and develop practical methods to solve circuit or production development problems.

Category B: Attributes for all-roundedness
6. Communicate effectively and work in harmony with other members in a team and develop leadership capability.
7. Communicate effectively with engineering graphics and computer graphics.
8. Demonstrate critical and creative thinking in electronic project development and handling.
9. Understand the importance of training and the needs for continue professional development in professional engineering career.
10. Practice and demonstrate initiative and learn by practice interactively and produce solutions on open-ended problems.
Syllabus:

I. Technology Training (7 weeks)

1. IC 0705 – Automation and Robotics (1 week)
 1.1 Introduction to industrial robots, programming and interface.
 1.2 Introduction to electronic motion control systems, programmable logic controller, servo and stepping motors. Data communication for industrial robots.
 1.3 Applications of sensors for automation and control. Application of electro-pneumatic components and system for automation and control.
 1.4 Introduction to material handling devices and Automatic Storage and Retrieval System (ASRS). Introduction to Computer Integrated Manufacturing system (CIM).

2. IC 1101 – Basic Electronic Practice for Electronics and Information Engineering (1 week)
 2.1 Introduction to common electronics parts, use of basic test instruments, best practices and basic troubleshooting techniques, electronics workshop safety.
 2.2 Soldering and de-soldering techniques, mounting and installation of electronic circuits, wiring of subassemblies.
 2.3 PCB design, hands on practice on PCB circuit design in EDA.
 2.4 Circuit artwork, etching process, PCB prototype fabrication.
 2.5 Introduction to embedded devices, hands on embedded device programming and testing practice.

3. IC 1102 – Advanced Electronic Practice for Electronics and Information Engineering (1 week)
 3.1 Introduction to electronic circuit interconnect technologies: SMT, COB and wave-soldering.
 3.2 Introduction to electronic assembly design and manufacturing process, components, tools and machines.
 3.3 Hands-on practice on wave-soldering, SMT process, chip level wire bonding, chip-on-board encapsulation, LCD display attachment with heat seal connector.
 3.4 Application and use of electronic test instruments: current and voltage measurements, two wire and four wire techniques, power and signal sources, oscilloscope probes, analogue and digital oscilloscopes.
 3.5 Introduction to Virtual Instrument, application and hands-on practice on Labview or equivalent software package.

4. IC3003 - Basic Scientific Computing (30 hours)
 4.1 Approach and techniques in using the MATLAB Development Environment.
 4.2 Mathematical Operations, matrices, linear algebra, polynomials and interpolation, data analysis and statistics, function functions, differential equations.
 4.3 Programming, M-files programming and application examples, flow control statements, function files
 4.4 Graphical user interface, data structures, input/output, and object-oriented capabilities.
 4.5 Graphics, data plotting, formatting, basic printing and exporting interfaces with examples in basic scientific applications, pie chart, bar chart, area chart, linear and log plots, 3D-View plot experiment with fitting curves to data.

5. IC3004 - General Computer and Network Skills (30 hours)
 5.1 General skills on installing software from Internet; file decompressing; general troubleshooting in PC; virus scan and cleaning; creating PDF documents, installing, upgrading, configuring, managing and troubleshooting Microsoft Windows (contemporary version).
 5.2 Managing access to resources, system configuring and data, files and disks management.
 5.3 Network Configuration, TCP/IP addressing, name resolution and IP routing.
 5.4 Remote access configuring and mobile computing.

6. IC3007 - Web Design, Animation and Presentation (30 hours)
 6.1 Create and manual edit HTML files in a typical web site with style sheets.
 6.2 Design web pages with DREAMWEAVER using graphics, fonts, layers and interactive features with multimedia, embed Java applets and apply JavaScript onto web pages.
 6.3 Differentiate and use appropriately different link methods. Create, upload and maintain web pages in web servers.
 6.4 FLASH web animations using timeline and visual effects and POWERPOINT presentations.

7. IC3008 - Database, Spreadsheet and Graphic Illustration (30 hours)
 7.1 Application of ACCESS in simple database creation, data sorting and retrieval and reporting.
 7.2 Application of EXCEL spreadsheets for basic business and scientific analysis with charts and graph illustrations.
7.3 Application of ILLUSTRATOR to create simple graphics in pixel-based and vector-based formats with simple graphic rendering techniques; colour, gradient, and pattern fill.
7.4 Application of PHOTOSHOP with basic photo-editing techniques; selection, adjustment, transformation and masking.

II. Engineering Drawing and Computer Graphics (46 hours)
1. Computer Based Technical Graphics (36 hours)
 1.1 Overview and Technical Sketching
 - Engineering graphics as a communication medium, geometrical sketching, problems and visualization.
 1.2 Appreciation of Engineering Drawing
 - Orthographic Projection Systems, Sectioning, Auxiliary Projections.
 1.3 Technical Sketching
 - Axonometric projections and standard practices; dimension and tolerance.
 1.4 Application of CAD in Engineering Drawing
 - CAD command system and drawing aids, computer based documentation; export, import, attachment.
 1.5 Three-dimensional Modelling and Presentation
 - Three-dimensional visualization; wire frame, surface and solid models; constructive solid geometry; primitives, Boolean operations.
 1.6 Orthographic projection from solid models; viewpoints, model space.
 - Appreciation of parametric solid modelling, parametric constraints; NURBS surface modelling.
2. Engineering Drawing in Electronic & Information Engineering (10 hours)
 2.1 Introduction to electronic circuit schematics and logic diagrams; electronic design automation software, placement of components, capturing, annotation, labelling, net list generation.
 2.2 Electronic parts library, symbols, physical packages, discrete components, integrated circuits, logic and analogue circuits, gate and pin definition, swappability.
 2.3 Electrical & electronic device symbols and layout, system block diagrams and representation, architectural wiring diagram, wiring table and diagrams for electronic and electrical installations.

III. Industrial Safety (15 hours)
1. Safety Management
 1.1 Overview in safety management.
 1.2 Development of safety in Hong Kong and Government’s current safety policy; safety training.
 1.3 Principles of safety management.
 1.4 Essential elements of safety management; causes of accidents and prevention methods; accident reporting procedures.
 1.5 Job safety analysis and fault tree analysis.
2. Safety Law
 2.1 F&IU Ordinance and Principal Regulations.
 2.2 Construction Sites (Safety) Regulations.
3. Occupational Hygiene
 3.1 Noise hazard and control.
 3.2 Dust hazard and control.
 3.3 Personal protective equipment.
 3.4 First aid and emergency procedures.
4. Safety Technology
 4.1 Manual and mechanical handling.
 4.2 Fire prevention.
 4.3 Dangerous substances and chemical safety.
 4.4 Machinery hazards and principles of guarding.
 4.5 Electrical safety.
 4.6 Construction safety - Potential hazards and risks associated with construction sites; safety codes of practice at work.
Training Pattern:

(I) Technology Training: 2 - 4 weeks in Year 1 term time for computer, networking, and software training elected by student, balance to be scheduled in Year 1 Summer.

(II) Engineering Drawing and Computer Graphics: 30 hours in Year 1 term time.

(III) Industrial Safety: 15 hours in Year 1 term time.

Method of Assessment:
The assessment is comprised of 100% continuous assessment with the following weighting:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment</td>
<td>50%</td>
</tr>
<tr>
<td>Report</td>
<td>30%</td>
</tr>
<tr>
<td>Test</td>
<td>20%</td>
</tr>
</tbody>
</table>

Reference Books:

Subject Title: Management and Organisation
Subject Code: MM2021
Number of Credits: 3

Hours Assigned:
- Lectures 28 hours
- Seminars 14 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Role and Purpose:
This subject introduces the basic theories and concepts concerning firstly, the functions of managing a business, secondly, the study of human behaviour and its implications for the management of organisations, and thirdly, the importance of social responsibility and ethics in managing organisations. The subject will also develop students’ critical thinking and communication skills, both oral and written.

Student Learning Outcomes:

Category A: Professional/academic knowledge and skills
1. Identify the nature of managerial work in a variety of forms of organisation, and assess the impact of the external environment on managers’ jobs.
2. Explain and analyse the functions of management – planning, organising, leading, and controlling.
3. Understand the essence of human behaviour and be able to assess the implications for the management of organisations and businesses.
4. Evaluate the arguments surrounding social responsibility and ethical behaviour in organisations and businesses, and in so doing have an enhanced awareness of the importance of such issues.

Category B: Attributes for all-roundedness
5. Develop their critical thinking, and oral and written communication skills.

Indicative Content
1. Managers and Management
 Define the nature of managerial work taking into account the impacts of the external environment in modern society. Provide an overview of the evolution of management thoughts.

2. Management Functions
 The major elements of the management functions: planning, organising, leading, and controlling, and their importance for the effective management of business organisations.

3. Planning

4. Organising an Enterprise
 Review of a variety of organisational structures and the identification of the conditions under which they are appropriate. Managerial communication and information technology. Staffing and human resource management.

5. Leading
 The manager’s role as a leader. Foundations of human behaviour. Leading and motivating employees – individuals and groups.

6. Controlling

7. Social Responsibility and Managerial Ethics
 Arguments for and against social responsibility as a business objective. Factors affecting managerial ethics. Approaches to improving ethical behaviour.
Teaching / Learning Approach:
In the lectures the general principles of the syllabus topic will be presented and developed. In the seminars, students will develop and apply the general principles of the topic in student-centred activities.

Method of Assessment:
Coursework: 50% Final Examination: 50%
Minimum Pass Grade: Coursework (D)
Final Examination (D)

Indicative Reading:
Recommended Textbook:

References:

Recommended periodicals, newspapers:
1. The Asian Wall Street Journal
2. The Economist
3. South China Morning Post
4. World Executive’s Digest
5. Company Annual Reports (see library collection)
SUBJECT DESCRIPTION FORM

Subject Title: Probability and Engineering Statistics Subject Code: AMA302
Number of Credits: 2 Hours Assigned: Lecture 20 hours
 Tutorial and Student Presentation 8 hours

Pre-requisite: nil Co-requisite: nil Exclusion: nil

Objectives:
The lectures aim to provide the students with an integrated knowledge required for the understanding and application of statistical techniques. To develop students’ ability for logical thinking and effective communication, tutorial and presentation sessions will be held.

Student Learning Outcomes:
The subject aims to introduce the students to some basic probability theory and stochastic processes. The emphasis will be on application of statistical methods to solving practical engineering problems.

On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Apply mathematical reasoning to analyse essential features of different statistical problems in engineering.
2. Apply appropriate probabilistic techniques to model and solve problems in engineering.
3. Make use of stochastic and Markov processes to solve typical engineering problems.
4. Search for useful information and use statistical tables in solving statistical problems in the context of engineering.

Category B: Attributes for all-roundedness
5. Undertake continuous learning.

Syllabus:
1. Probability Theory
 Probability and random variables; Probability distributions; Sampling distributions; Sampling means; The Central Limit Theorem; Significance and test of hypothesis.
2. Stochastic Process
 Bernoulli process; Poisson process; time averaging and ergodicity; Spectral analysis; Correlation and spectra; Wiener-Khintchine theorem; White noise; Narrow-band noise; thermal noise; Signal-to-noise ratio and probability of error; Effective noise temperature and noise figure.
3. Markov Process
 Recursions and Markov chains; Applications to queuing theory; Birth-death process.

Method of Assessment:
Continuous assessment: 40% Examination: 60%

To ensure that students learn and reflect continuously, Continuous Assessment is an important element and students are required to obtain Grade D or above in both the Continuous Assessment and the Examination components. The continuous assessment comprises of assignments, in-class quizzes and tests. The assignments are used to assist the students to reflect and review on their progress. The end-of-semester examination is used to assess the knowledge acquired by the students and their ability to apply and extend such knowledge.
Textbooks and Reference Books:

SUBJECT DESCRIPTION FORM

<table>
<thead>
<tr>
<th>Subject Title:</th>
<th>Electronic Circuits</th>
<th>Subject Code:</th>
<th>EIE304</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Credits:</td>
<td>3</td>
<td>Hours Assigned:</td>
<td>Lecture/tutorial 39 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Laboratory 3 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Equivalent to 9 laboratory hours)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre-requisite:</th>
<th>Basic Electricity and Electronics I (ENG237)</th>
<th>Co-requisite:</th>
<th>nil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basic Electricity and Electronics II (ENG238)</td>
<td>Exclusion:</td>
<td>nil</td>
</tr>
</tbody>
</table>

Objectives:

This is the main foundation subject introducing the working principles and constructions of analog electronic circuits. The specific aim is to familiarize students with the design and operation of analog building blocks (e.g., mirrors, differential stages, output stages), practical operational amplifiers, feedback amplifiers and oscillators.

Student Learning Outcomes:

On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the operations of transistor devices, e.g., BJT and MOSFET
2. Analyze the small-signal characteristics of transistor amplifiers
3. Design basic analogue building blocks
4. Understand the operations and limitations of operational amplifiers
5. Analyze and design feedback circuits and oscillators

Category B: Attributes for all-roundedness
6. Communicate effectively
7. Think critically and creatively
8. Assimilate new technological development in related field

Syllabus:

1. **Analog Building Blocks**
 1.1 Simple current mirrors; problem due to Early effect and non-ideality; Wilson and Widlar mirrors; use of mirrors as active loads.
 1.2 Differential amplifier (DA) stage; analysis using half-circuit models, common-mode and differential-mode gains; common-mode rejection ratio (CMRR).
 1.3 Output stages; class A, class B and class AB output stages; efficiency; harmonic distortions.

2. **Operation Amplifier Design**
 2.1 Typical operational amplifier circuit: input differential stage, CE gain stage, and output stage; details of internal circuit design: active loading, level shift, current sourcing.
 2.2 Non-idealities: dc offset, input bias current (causing offset); finite input impedance, etc.
 2.3 Slew-rate limitation; gain-bandwidth product; stability design; concept of unity-gain feedback; phase margin; design of low-frequency pole and use of Miller effect for internal compensation.

3. **Feedback Circuits and Oscillators**
 3.1 General feedback configuration; basic amplifier gain, loop gain and closed-loop (overall) gain.
 3.2 Effects of feedback on gain, frequency response, distortion, input and output impedances.
 3.3 Feedback circuit configurations: shunt-series, shunt-shunt, series-shunt and series-series feedback; stability analysis; phase margins and compensation methods; analysis of feedback circuits via two-port models.
 3.4 Oscillation criteria; amplitude limiting and sustained oscillation; Colpitts, Hartley, Wien bridge, phase-shift and crystal oscillators.
Laboratory Experiments:
Each student is required to complete the following three laboratory experiments:

1. Title: Negative Feedback Amplifier
 Objective: To design the feedback network for a given amplifier in order to meet certain specifications.

2. Title: Oscillator
 Objective: To design a Wien-bridge oscillator using an IC amplifier.

3. Title: Characteristics of Operational Amplifier
 Objective: To study the internal operation of an operation amplifier and measure the characteristics of the responses.

Method of Assessment:
Continuous assessment: 40% Examination: 60%

The continuous assessment consists of assignments, lab reports, and a test.

Textbooks:

Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: Integrated Analogue and Digital Circuits

Subject Code: EIE305

Number of Credits: 3

Hours Assigned: Lecture/tutorial 39 hours
Laboratory 3 hours
(Equivalent to 9 laboratory hours)

Pre-requisite: Basic Electricity and Electronics I (ENG237)
Basic Electricity and Electronics II (ENG238)
Electronic Circuits (EIE304)

Co-requisite: nil
Exclusion: nil

Objectives:
To develop an in-depth understanding of the design principles and applications of integrated analogue and digital circuits.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the fundamental principles and applications of digital logic circuits.
2. Design periodic signal generators from digital logic circuits.
3. Understand filter design principles and circuit technologies.
4. Apply theory and realize analog filter circuits.
5. Understand the Verilog style digital design.
6. Perform logic synthesis using FPGA tools.

Category B: Attributes for all-roundedness
7. Communicate effectively
8. Think critically and creatively
9. Assimilate new technological development in related field

Syllabus:
1. Digital Circuits
 1.1 Digital logic circuit families: Transistor-transistor logic (TTL), emitter-coupled logic (ECL), and CMOS logic. Input and output characteristics. Fan-in (in CMOS) and fan-out (in TTL). Noise margin. Time delay. Power loss. Switching speed.
 1.3 Memory circuits: RAMs, ROMs and EPROMs.

2. Analog Filter Design
 2.1 Basic filter principles. Filter approximations (e.g., Butterworth, Chebychev, elliptic, Cauer, etc.). Transfer functions for low-pass, band-pass, high-pass, and band-stop filters. Frequency responses (magnitude and phase).
 2.2 Analogue filters: lossless passive realization and active RC realization. Standard first-order filters and biquads.
 2.3 Discrete-time realizations. z-domain functions. Active switched-capacitor realization. Standard first-order filters and biquads.

3. Introduction to Verilog Styles Digital Design and Synthesis
 3.1 Basic language structures: data types and modules. Structural and behavioural specifications: basic gates, user-defined primitives, modelling levels, synthesizable operations, continuous assignments. Procedural specifications: blocks, functions and tasks, blocking and non-blocking assignments, control and conditional constructs.
 3.2 Basic design methodology: small module design, module validation, finite state machines. Managing large complexity leading to large designs.
 3.3 Synthesis to FPGA: timing, area and power considerations.
Laboratory Experiments:
1. Design of electronic circuits using Xilinx FPGA tools.
2. Simulation of filter design using SPICE.

Method of Assessment:
Continuous assessment: 40% Examination: 60%

The continuous assessment consists of assignments, quizzes, and two tests.

Textbooks:

Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: IC Technology and Processes
Subject Code: EIE306
Number of Credits: 3
Hours Assigned: Lecture/tutorial 39 hours
Laboratory 3 hours
(Equivalent to 9 laboratory hours)

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
To enable students to gain basic knowledge and understanding in the following aspects:
1. Fundamentals of semiconductors
2. The operating principles of pn junctions and MOSFETs
3. CMOS processes and basic CMOS logic gates
4. Fabrication processes of semiconductor devices

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand basic electronic properties of semiconductors.
2. Design structures of pn junctions to meet a given specification.
3. Fabricate basic semiconductor devices.
4. Appreciate the effects of defects and impurities on the properties of semiconductor devices.
5. Optimize the physical structure of a MOSFET.

Category B: Attributes for all-roundedness
6. Present ideas and findings effectively.
7. Think critically.
8. Learn independently.
9. Work in a team and collaborate effectively with others.

Syllabus:
1. Semiconductor Fundamentals
 Energy band, extrinsic semiconductor, carrier concentration, mobility, drift and diffusion currents, Einstein Relationship.
2. P-N Junctions
 Energy band diagram, electrostatics of p-n junctions, capacitance, forward and reverse current characteristics, applications in optoelectronics.
3. Bipolar Junction Transistors
 Energy band diagram at equilibrium and under bias, current components, dependence of current gain on transistor parameters, Ebers-Moll model, Charge control model.
4. MOS Field-Effect Transistors
 MOS structure, capacitance of MOS system, operation of MOSFETs, oxide and interface charge, derivation of the threshold voltage, I-V characteristics, short channel effects.

Laboratory Experiments:
Fabrication of Semiconductor Device
Session 1: Cleaning of wafers and oxidation and windows opening and doping;
Session 2: Thin film deposition, photolithography, mask alignment, pattern definition and etching; and
Session 3: Device characterization
Method of Assessment:
Continuous assessment: 40% Examination: 60%

The continuous assessment consists of assignments, quizzes, and two tests.

Textbook:

Reference Book:
SUBJECT DESCRIPTION FORM

Subject Title: Computer System Fundamentals Subject Code: EIE311
Number of Credits: 3 Hours Assigned: Lecture/tutorial 39 hours
 Laboratory 3 hours
 (Equivalent to 9 laboratory hours)

Pre-requisite: Logic Design (EIE211) Co-requisite: nil Exclusion: nil

Objectives:
To provide a broad treatment of the fundamentals of computer systems.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the fundamentals of computer systems and associated technologies.
2. Solve problems and design simple systems related to computer systems.
3. Apply different important computer interfacing techniques in designing a computer system.
4. Develop a simple assembly program with an assembler.

Category B: Attributes for all-roundedness
5. Present ideas and findings effectively.
6. Think critically.
7. Learn independently.
8. Work in a team and collaborate effectively with others.

Syllabus:

1. Microprocessors and Microcomputers
 The following topics will be discussed in detail with references to one or two well-established (contemporary) microprocessor systems.
 1.1 CPU architecture; memory space and I/O space; instruction fetch and execution; pipelining; essential assembly language instruction types; working principle of assembler; assembler directives/pseudocodes; examples of assembly language programs.
 1.2 Memory interface: Memory devices; address decoding; memory interface; banking; bus buffering and driving; wait state, bus cycle, instruction cycle.
 1.3 Basic I/O interface: Memory-mapped I/O; I/O port address decoding; programmable peripheral interface; handshaking.
 1.4 Interrupts: polling, programmed I/O, interrupt I/O; Basic interrupt processing, software interrupt, expanding the interrupt structure, interrupt controller.
 1.5 Serial interface: Asynchronous/synchronous interface, RS232C serial interface and handshaking.
 1.6 Direct memory Access and DMA-controlled I/O: Basic DMA operation, DMA controller, shared-bus operation, disk memory systems, video displays.
 1.7 Cache memory: mapping, associativity; replacement policies; write policies; performance.

2. Disk Operating System
 2.1 Roles of basic input/output system (BIOS) and basic disk operating system(DOS); power-up sequence; bootstrap; command processor; system control, automatic program execution (e.g. batch file); operating system calls via software interrupts; system utilities; file operating commands; device driver.
 2.2 File system: space management e.g. file allocation table; File management; directory entry and file control block.
 2.3 Multitasking and time-sharing: time-slicing; process states and process control block; context-switching mechanism; scheduling schemes and process priorities.
3. **Computer Arithmetic**
 3.1 Data formats: signed/unsigned numbers, binary/decimal/BCD numbers, ASCII, fixed/ floating point numbers, IEEE standard; Arithmetic algorithms: Fast addition, multiplication and division algorithms.

Laboratory Experiment:

Six of the following topics or others.

1. Memory manipulation & Data representation
2. Serial communication
3. Parallel communication
4. Interrupt I/O
5. DMA I/O
6. BIOS
7. Device driver
8. Power-up procedures
9. User interface

Method of Assessment:

Continuous Assessment: 40%
Examination: 60%

Textbook:

Reference Books:

SUBJECT DESCRIPTION FORM

Subject Title: Linear Systems
Subject Code: EIE312
Number of Credits: 3
Hours Assigned: Lecture/tutorial 36 hours
Laboratory 6 hours
(Equivalent to 18 laboratory hours)

Pre-requisite: Mathematics I (AMA201)
Co-requisite: nil
Exclusion: nil

Objectives:
1. To provide students with basic concepts and techniques for the modelling and analysis of linear continuous-time and discrete-time signals and systems.
2. To provide students with an analytical foundation for further studies in Communication Engineering and Digital Signal Processing.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the representations and classifications of the signals and systems.
2. Model linear systems using time and frequency domain approaches for both continuous-time and discrete-time models.
3. Analyze signals and systems using both time domain and frequency domain techniques.
4. Understand the generation of a discrete-time signal by sampling a continuous-time signal.
5. Understand the design of analogue filters.
6. Apply software tools, particularly MATLAB, to laboratory exercises for experimenting with theories, and to the analysis and design of signals and systems.
7. Appreciate the advantages and disadvantages of using the different representations and modeling approaches.

Category B: Attributes for all-roundedness
8. Present ideas and findings effectively.
9. Think critically.
10. Learn independently.
11. Work in a team and collaborate effectively with others.

Syllabus:
1. Signal Representation
 Signal Classification, Continuous and Discrete-Time Signals, Random Signals. Time-Domain and Frequency-Domain Representations.

2. Continuous-Time and Discrete-Time Systems

3. Fourier Representations for Signals

4. Laplace Transform
5. **z-Transform**

6. **Analogue Filters**
 Ideal Filters, Bode Plots. Filter Design: Butterworth Filters, Chebyshev Filters, Frequency Transformations.

Laboratory Experiments:

1. Fundamentals of Signals
2. Linear Time-Invariant Systems
3. Fourier Analysis of Continuous-time Signals
4. Sampling
5. Fourier Analysis of Discrete-time Signals
6. Laplace Transform

Method of Assessment:

Continuous Assessment: 40% Examination: 60%

The continuous assessment will consist of a number of assignments, laboratory reports, and two tests.

Reference Books:

SUBJECT DESCRIPTION FORM

Subject Title: Object-Oriented Design and Programming
Subject Code: EIE320

Number of Credits: 3
Hours Assigned:
Lecture/tutorial 36 hours
Laboratory 6 hours
(Equivalent to 18 laboratory hours)

Pre-requisite: Computer Programming (ENG236)
Co-requisite: nil
Exclusion: nil

Objectives:
This subject will provide students with the principles of object orientation from the perspective of Java implementation and UML. Students are expected to learn the concepts of and practical approaches to object-oriented analysis, design and programming using UML and Java.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the principles of object oriented design.
2. Apply the programming language Java in object oriented software development.
3. Apply the tool UML in object oriented software modeling.
4. Develop a simple software application using the object oriented approach.

Category B: Attributes for all-roundedness
5. Learn independently and be able to search for the information required in solving problems.
6. Present ideas and findings effectively.
7. Think critically.
8. Work in a team and collaborate effectively with others.

Syllabus:
1. Introduction to Software Engineering
 Software products; the software process; process models; process visibility.
2. Java Programming Basic
 Java technologies; Java platform; Java language basic: variables, operators, expressions, statements, blocks, control flow, methods, arrays
3. Object-Oriented Programming with Java
 Objects and classes; class definition; fields, constructors and methods; object interaction; grouping objects; array and collections; designing classes; inheritance and polymorphism; managing inheritance: creating subclasses and super-classes; hiding member variables, overriding methods. Interfaces and packages.
4. Web Programming with Java
 Java applets: creating custom applet subclasses, HTML applet tag syntax, passing information from Web pages to applets. Java Servlets: architecture of servlets, client interaction, life cycle of servlets, saving client states; servlet communications, session tracking, and using server resources.
5. Unified Modelling Language (UML)
Laboratory Experiment:

1. **Laboratory Work**

 Students will implement an on-line shopping system using Java Servlets and Tomcat Web server. Students will use a UML software tool to write requirement specifications and design documents for the on-line shopping system.

2. **Practical Work**

 Students will be requested to write and debug Java programs during tutorial and lab sessions.

Method of Assessment:

Coursework: 40%
Examination: 60%

Textbooks:

Reference Books:

SUBJECT DESCRIPTION FORM

Subject Title: Interface and Embedded Systems
Subject Code: EIE322
Number of Credits: 3

Objectives:
To provide students with the concepts and techniques in designing embedded software and hardware interfaces.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Identify and model real-time requirements of products.
2. Apply embedded software techniques to satisfy functional and response-time requirements.
3. Apply circuit and computer knowledge onto product design.
4. Practice self-learning through reading of manuals and component specifications.
5. Demonstrate practical skills in the construction of prototypes.
6. Design under tradeoffs among various constraints such as manpower, program size and hardware complexity.

Category B: Attributes for all-roundedness
7. Pursue life-long learning through searching and reading technical materials.
8. Design and solve problems in general.
9. Present ideas and findings effectively.
10. Think critically.
11. Work in a team and collaborate effectively with others.

Syllabus:

1. Embedded System Hardware
 Microcontroller-based, microprocessor-based and PC-based approaches; Details of a typical microcontroller architecture e.g. the 8051 or AVR family.

2. I/O Interfacing
 Output-pin driving limitations; Current driving; inductive load driving; Pulse generation and measurement; Keyboard multiplexing, display multiplexing; LCD controllers; analog signals sensing, processing and generation.

3. Embedded Software Development and Testing
 Embedded software issues; tasks and events; Interrupt system: nesting, priority and latencies; inter-task communication, the shared-variables problem and solutions; Multitask embedded software architectures and scheduling schemes; task latencies, CPU utilization, RMS theorem; program simulator, debugger, emulator and logic/state analysis tools; hardware/software co-design issues.

4. Real-time Operating System
 Kernel services; semaphores; task priority and scheduling; priority inversion.

5. Industrial I/O Standards
 Signalling, transaction protocols, timing specifications and arbitration. e.g. RS485, PS2, I²C, CAN and USB. Case studies on USB.

6. Bus Interfacing
 Synchronous and asynchronous transfers; bus events and states, electrical buffering; storage buffering; dynamic bus sizing; data ordering and alignment; pipelined and burst transfers; loading effects; switching-current effects; Memory device interfaces: dynamic memory, flash memory and application-specific memories.
Laboratory Experiments:
1. Serial I/O and timer-based baud rate generation
2. Timer-based pulse width measurement
3. Timer-triggered multitasking
4. Pulse-Width-Modulated output generation.
5. USB development tool and programming.

Method of Assessment:
Continuous Assessment: 50% Examination: 50%

The continuous assessment will consist of assignments, tests and laboratory work.

Reference Books:
Subject Title: Integrated Project
Subject Code: EIE330
Number of Credits: 2
Hours Assigned: Lecture 12 hours, Laboratory 9 hours, Mini-project Work 69 hours, Total 90 hours

Pre-requisite: Electronics Design (EIE210), Computer Systems Fundamentals (EIE311)
Co-requisite: nil
Exclusion: nil

Objectives:
At a mid-stage of the programme, this subject plays the role of applying knowledge acquired in other subjects in an integrated manner. While the emphasis will mainly be placed on the technical challenges that may encompass component evaluation, circuit design, software development and troubleshooting, students will also be given opportunities to face various non-technical difficulties behind the implementation/fabrication of electronic/information products.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Integrate and apply knowledge acquired in previous subjects.
2. Design under cost constraints and with component limitations/tolerances in mind.
4. Locate and resolve problems, in both circuits and software.

Category B: Attributes for all-roundedness
5. Search, self-learn and try untaught solutions.
6. Exercise discipline and time-planning to meet deadlines.
7. Present ideas and findings effectively.
8. Think critically.
9. Learn independently.
10. Work in a team, collaborate effectively with others, and exercise leadership.
11. Exercise entrepreneurship while designing the project by addressing cost effectiveness, market position, entry barrier, user acceptance…etc.

Syllabus / Operation:
The project(s) shall be of engineering development in nature with objectively defined milestones (or Subtasks). The scope to be covered shall include embedded software development and circuit design, but does not exclude the possibilities of extending into areas such as DSP or RF. The project(s) shall not be close-ended in nature and shall provide ample headroom for the more enthusiastic students to excel. Students shall work in groups of two or three. Each Subtask will be given a certain period of time to complete. Each student will take turn in serving as the Team Leader to lead the group to complete a subtask assigned. Progress will be measured by functional Demonstrations, and one or two written Progress Reports. Upon the completion of the project, each group should give a demonstration/presentation of the completed product and submit a Final Report. Students are required to individually keep a Logbook on the work performed during the entire period. The logbooks are to be evaluated and signed by the supervisor /assessor on a monthly or more frequent basis. At the end of the project, the logbook will be collected and graded.
Lectures:
Lectures are to be conducted during the first half of the semester. During these lectures, the instructor shall give clear explanation on the functional and technical requirements, with a schedule for submitting deliverables. Concepts specific to the project(s), which are not yet learnt by the students, are to be covered in these lectures. Concepts behind critical use of tools and equipment will also be strengthened.

Guided Laboratory Experiments:
The project will normally require the students to use specific tools and/or equipment Laboratory demonstrations and exercises will be arranged in the early weeks. Below are some examples:
1. Troubleshooting and measurement techniques using typical equipment.
2. Use of project-specific development tools, software and hardware.
3. Use of specialized equipment for project-specific measurements.

Self-Paced Work:
The class could well be composed of a good mix of students with different timetables. Multiple sessions of laboratory, inevitably some evening slots, will be scheduled to cater for self-paced work in the laboratory, particularly during the second half of the semester.

Method of Assessment:
Continuous assessment: 100%
Throughout the project, the subject lecturer will conduct periodic interview discussions with the student groups. On these occasions, assessment on individual student’s ability and contribution will be conducted, according to the attributes detailed below.

<table>
<thead>
<tr>
<th>INSIGHT</th>
<th>as evidenced by how well issues are understood and resolved</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRIVE</td>
<td>as evidenced by initiative, diligence and tenacity</td>
</tr>
<tr>
<td>CREATIVITY</td>
<td>as evidenced by ingenuity and imagination</td>
</tr>
<tr>
<td>COMMUNICATION</td>
<td>as evidenced by an ability to express ideas clearly and succinctly</td>
</tr>
</tbody>
</table>

At the completion of each subtask, one member of a team will be asked to give a demonstration to the assessor. Based on the presentation and response to questions addressed to the members, the assessor shall rate the contribution, achievement, and performance of each member. Below is a recommended assessment scheme:

<table>
<thead>
<tr>
<th>Assessment type</th>
<th>Weighting</th>
<th>Number of times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance</td>
<td>10 %</td>
<td>= 5</td>
</tr>
<tr>
<td>Quiz/Test</td>
<td>10 %</td>
<td>= 2</td>
</tr>
<tr>
<td>Progress Demonstrations</td>
<td>20 %</td>
<td>= 2</td>
</tr>
<tr>
<td>Logbook & Presentation</td>
<td>20 %</td>
<td>= 2</td>
</tr>
<tr>
<td>Progress& Final Reports</td>
<td>20 %</td>
<td>= 2</td>
</tr>
<tr>
<td>Final Demonstration</td>
<td>20 %</td>
<td>1</td>
</tr>
</tbody>
</table>

Reference Books:
To be specified by the subject lecturer for each project.
Subject Title: Communication Fundamentals

Subject Code: EIE331

Number of Credits: 3

Hours Assigned: Lecture/tutorial 36 hours
Laboratory 6 hours
(Equivalent to 18 laboratory hours)

Pre-requisite: Mathematics I (AMA201)
Mathematics II (AMA202)

Co-requisite: nil
Exclusion: nil

Objectives:
Telecommunication occupies an important role in every society. The major objectives of this subject are to establish the foundations for the students so that they understand the telecommunication industry, its historical development, and the future trend; the fundamental principles governing the operation of telecommunication systems.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Identify various elements in a typical communication system.
2. Perform quantitative measurement for information.
3. Describe the operational details of various modulation and demodulation schemes.
4. Relate the performance of a communication to features such as signal to noise ratio and bandwidth.
5. Design a simple communication system consisting the basic building blocks.

Category B: Attributes for all-roundness
6. Communicate effectively.
7. Think critically and creatively.
8. Work in a team collaboratively.

Syllabus:
1. Introduction
 1.1 Introduction to communication systems. Elements of a basic communication system. Examples of wired and wireless systems.

2. Information Theory
 2.1 Measure of information. Entropy.
 2.2 Conditional, joint and mutual information. Channel capacity.

3. Analogue Communications
 3.1 Amplitude modulation: double sideband, single sideband and vestigial sideband modulation, frequency spectrum and power relationship of the amplitude modulation signal, envelope detector, coherent detector, superheterodyne receiver.
 3.2 Angular modulation: phase and frequency modulation, frequency spectrum of the angular modulation signals, discriminator, PLL detector. Stereo FM.
 3.3 Noise in analogue modulation: Output S/N ratios in various analogue modulation systems. S/N ratio improvement through pre-emphasis/de-emphasis.

4. Pulse Modulation
 4.1 Pulse amplitude modulation, quantizing and coding, quantization noise, uniform and non-uniform quantization, pulse code modulation, delta modulation. Comparison of pulse code modulation and delta modulation systems.
 4.2 Time division multiplexing: concept of framing and synchronization, TDM-PCM telephone system, comparison of TDM and FDM.
Laboratory Experiment:

Experiments
1. Amplitude Modulation
2. Frequency Modulation
3. Pulse Modulation

Mini Project
1. Superheterodyne receiver

Method of Assessment:
Continuous assessment: 40% Examination: 60%

Textbook:

Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: Data and Computer Communications
Subject Code: EIE333

Number of Credits: 3
Hours Assigned:
Lecture/tutorial 36 hours
Laboratory 6 hours
(Equivalent to 18 laboratory hours)

Pre-requisite: Communication Fundamentals (EIE331)
Co-requisite: nil

Exclusion: Data and Computer Communications (EIE442)

Objectives:
This subject is designed to:
1. provide a solid foundation to the students about architectural concepts of data communications and computer networking
2. enable the students to master the knowledge about data communications and computer networking in the context of real-life applications
3. prepare the students for understanding, evaluating critically, and assimilating new knowledge and emerging technology about data communications
4. enable the students to understand the impact of new computer and communication technology on human society

Student Learning Outcomes:
On completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Describe the services, functions, and inter-relationship of different components within an architectural model such as Open System Interconnection (OSI) seven layer model and TCP/IP model.
2. Describe how components and subsystems in the physical layer, data link layer, and network layer inter-operate; and analyze their performance.
3. Evaluate critically the performance of some common data communications systems.
4. Design solutions to solve engineering problems that require the application of data communications technology.

Category B: Attributes for all-roundedness
5. Take up new knowledge by reading related magazines, journal papers, and trade brochure, and by analyzing new situations while taking into account various constraints.
6. Describe how rapid progress of computer and communication technology can impact on the society in various aspects, such as culture and economics.

Syllabus:
1. Communication Networks, Services, and Layered Architectures
 Evolution of networking and switching technologies. Protocols and services. Layered network architectures: OSI 7-layer model, TCP/IP architecture
2. Digital Transmission
 Baseband data transmission and line coding. Digital modulation and its applications in modems. Transmission media. Transmission impairment, data rate limit, error detection and correction.
3. Protocols in Data Link Layer
 Automatic Repeat Request (ARQ) protocol and reliable data transfer service. Sliding-Window flow control. Framing and point-to-point protocol.
4. Local Area Networks
Media Access Control (MAC) protocols: the IEEE802.3 and IEEE802.11 standard. Interconnection of LANs: bridge, switch, and virtual LAN

5. Packet Switching Technology

6. TCP/IP Protocols
IP packet format, addressing, subnetworking, and IP routing. TCP protocol: connection management and congestion control. Dynamic Host Configuration, Network Address Translation, and mobile IP.

7. Case Studies (conducted in tutorial sessions)
Recent development in data Communications and computer Networking.
Selected topics: Voice over IP, Virtual Private Network, Internet2, High Speed Router design ... etc.

Laboratory Experiments:
1. FSK Modem
2. Microcontroller communication over EIA323 interface
3. Protocol Analysis
4. Network Address Translation
5. Routing simulation study
6. Terminal Server over the Ethernet

Method of Assessment:
Continuous assessment: 50% Examination: 50%

The continuous assessment will consist of a number of assignments, laboratory reports, case study reports (administered in tutorial sessions), and two tests.

Textbook:

Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: Applied Electromagnetics
Subject Code: EIE338
Number of Credits: 3
Hours Assigned: Lecture/tutorial 39 hours
Laboratory 3 hours
(Equivalent to 9 laboratory hours)

Pre-requisite: nil Co-requisite: nil Exclusion: nil

Objectives:
1. To introduce to students the physical laws that govern the electromagnetic phenomena commonly encountered in electrical engineering systems.
2. To familiarise students with the techniques for solving problems in electromagnetics.
3. To provide students the foundation of electromagnetic field theory required for pursuing the EE programme.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional / academic knowledge and skills:
1. Apply mathematical techniques to formulate the fundamental field equations and to analyse electromagnetic phenomena related to electrical engineering systems.
2. Select the most appropriate laws/theorems/solution techniques for electromagnetic field analysis.
3. Appreciate the effect of material media and boundary conditions on the behaviour of field quantities.
4. Apply electromagnetic theory to the design of practical electromagnetic devices and components.
5. Appreciate recent developments in computational electromagnetics.
6. Have had hands-on experience in electromagnetic measurements and be able to compare/appreciate different kinds of field plotting mechanisms, e.g., to verify Laplace’s equation with a resistance network.

Category B: Attributes for all-roundedness:
7. Appreciate the engineering applications of electromagnetic theory.
8. Appreciate the importance of electromagnetics from a historical perspective.
9. Interpret the physical meaning and phenomena behind mathematical equations and computed results.
10. Describe a physical problem mathematically and to apply mathematical tools to analyse and solve physical problems.

Syllabus:
1. Static fields: Electrostatics
 Electric fields, Coulomb’s law, Gauss’s law, potential, capacitance and energy storage. Magnetostatics: Biot-Savart law, magnetic fields, Ampere’s circuital law, force on a current-carrying conductor, Lorentz force and energy storage.

2. Time-varying Fields
 Faraday’s Law and Lenz’s Law; self-inductance, mutual inductance and stored energy.

3. Mathematical Preliminaries
 Vectors, vector and scalar product. The operators, grad, div and curl. Concept of line, surface and volume integrals. Stokes’s and divergence theorems.

4. Maxwell’s Equations and EM Waves
 Maxwell’s equations in integral form as a restatement of fundamentals. Differential form. The continuity equation. The displacement current. The wave equation, plane polarized wave, velocity of propagation and energy flows.

5. Material Media
 Dipole, polarisation, permittivity, dielectrics and capacitors. MMF, ferromagnetism, permeability, reluctance and permeance, magnetisation curve and hysteresis. Magnetic circuits.
6. **Solution of Static Field Problems**
 Hand-mapping, method of images, numerical and computer-based methods. Field analogues. Estimation of conductance, inductance, capacitance and field quantities from field plots.

7. **Electromagnetic Design**
 Magnetic circuit design for inductors, actuators and rotating machines. Design of cable insulation and capacitors. Concepts of electromagnetic interference and screening.

Laboratory Experiments:
1. Field plotting using resistance and impedance networks.
2. Field plotting using the Electrolytic tank.
3. Field plotting using the resistive paper.

Method of Assessment:

Continuous Assessment: 30%
Examination: 70%

The continuous assessment will consist of assignments, tests and laboratory reports.

Reference Books:
SUBJECT DESCRIPTION FORM

<table>
<thead>
<tr>
<th>Subject Title:</th>
<th>English for Engineering Students</th>
<th>Subject Code:</th>
<th>ELC3501</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Credits:</td>
<td>2</td>
<td>Hours Assigned:</td>
<td>Seminar 2 hours / bi-weekly for 14 sessions 28 hours</td>
</tr>
<tr>
<td>Group Size:</td>
<td>20 (maximum)</td>
<td>Pre-requisite:</td>
<td>nil</td>
</tr>
<tr>
<td>Co-requisite:</td>
<td>nil</td>
<td>Exclusion:</td>
<td>nil</td>
</tr>
</tbody>
</table>

Objectives:
To develop those English language skills required of engineering students to communicate effectively in their future professional careers. Attention will be given to helping students develop the core competences identified by the University as vital to the development of effective life-long learning strategies and skills.

Student Learning Outcomes:
By the end of the subject, students should be able to use appropriate language and text structure to:

Category A: Professional/academic knowledge and skills
1. Write reports related to technical studies.
2. Write workplace correspondence related to engineering professions.
3. Present information and ideas professionally.

Category B: Attributes for all-roundedness
4. Communicate effectively in speech and in writing.
5. Work individually on their own initiative, and as team members.

Syllabus:
1. **Written Communication**
 Identifying and writing functions common in technical subject discourse; understanding and applying principles of technical text structure; developing paraphrasing, summarising and referencing skills; improving editing and proofreading skills; achieving appropriate tone and style in technical and report writing; selecting and using relevant content, appropriate style, acceptable format, structure and layout in letters, memoranda and reports.

2. **Spoken Communication**
 Recognising the purposes of and differences between spoken and written communication in English in professional contexts; identifying and practising interactional and linguistic skills for oral presentations; preparing and delivering presentations.

3. **Language Appropriacy**
 Introducing notions of context-sensitive language use in both spoken and written English.

4. **Language Development**
 Improving and extending relevant features of students’ grammar, vocabulary and pronunciation.
Teaching and Learning Approach and Teaching Schedule:

The subject is designed to introduce students to the communication skills, both oral and written, that they may be expected to need to function effectively in their future professions. These skills will be necessary for successful employment in any organisation where internal and/or external communication is conducted in English.

The study method is primarily based on seminars which will include discussions, role-play, individual and group activities. In addition to learning materials specially prepared by English Language Centre staff, use will be made of information technology and the ELC’s Centre for Independent Language Learning. Teachers will also recommend additional reference materials as required. A considerable amount of individual self-access learning is expected of students.

Classes will be for 2 hours/ bi-weekly x 14 sessions = 28 hours. They will therefore run from Week 1, Week 3, and so on. Two hours bi-weekly is more appropriate than one hour per week since the former allows a more in-depth coverage and students can be given private study in one week and be required to hand it in two weeks later when they have the next class.

<table>
<thead>
<tr>
<th>Session</th>
<th>Topic Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Technical writing: describing products and procedures</td>
</tr>
<tr>
<td>2nd</td>
<td>Technical writing: explaining, comparing and contrasting</td>
</tr>
<tr>
<td>3rd</td>
<td>Technical writing: presenting problems and solutions</td>
</tr>
<tr>
<td>4th</td>
<td>Report writing: describing aims, background, procedure</td>
</tr>
<tr>
<td>5th</td>
<td>Report writing: presenting findings and conclusions</td>
</tr>
<tr>
<td>6th</td>
<td>Report writing: writing a summary (abstract)</td>
</tr>
<tr>
<td>7th</td>
<td>Oral presentation: planning</td>
</tr>
<tr>
<td>8th</td>
<td>Oral presentation: delivery</td>
</tr>
<tr>
<td>9th</td>
<td>Oral presentation: language practice</td>
</tr>
<tr>
<td>10th</td>
<td>Workplace writing: letters of enquiry</td>
</tr>
<tr>
<td>11th</td>
<td>Workplace writing: letters of adjustment</td>
</tr>
<tr>
<td>12th</td>
<td>Workplace writing: memo reports</td>
</tr>
<tr>
<td>13th</td>
<td>Workplace writing: office memos</td>
</tr>
<tr>
<td>14th</td>
<td>Assessment (oral/ written)</td>
</tr>
</tbody>
</table>

Method of Assessment: Continuous Assessment: 100%

Reference Books:

Written Communication

Spoken Communication
SUBJECT DESCRIPTION FORM

Subject Title: Engineering Management
Subject Code: ENG306
Number of Credits: 3
Hours Assigned: Lecture/tutorial 42 hours

Pre-requisite: nil Co-requisite: nil Exclusion: nil

Objectives:
This subject will provide students with:
1. Skills for analysing and applying the basic principles and techniques involved in management of people and engineering activities in the production of goods and services. Techniques learned will enable students to carry out operations in an organization for the purposes of organizing, planning and control of project and process activities.
2. Skills in the use and understanding of different quality management tools and techniques in an organisation, hence enable students to interpret the quality work content of typical jobs.
3. The ability to apply ethical and business behaviours in engineering organizations in the changing environment in which they operate.
4. The ability to apply the change management techniques and enable students to evaluate the changing factors that affect the change process before implementation of any changes.

Student Learning Outcomes:
Category A: Professional/academic knowledge and skills
Category B: Attributes for all-roundedness

1. To analyse the organisation structure, and identify the planning and strategic management factors affecting the success of organizations in both manufacturing, and service sectors. (Objective 1 and Syllabus Item 1). Category A
2. To apply appropriate management techniques to improve organization structure and procedures, and quality management. (Objective 2 and Syllabus Item 2). Category A
3. To describe and differentiate between the project management objectives and requirements, and select an appropriate project management technique and apply it to analyze project activities. (Objective 1 and Syllabus Item 3). Category A
4. To be able to analyse factors affecting the changes in the work environment, and be able to control
5. To discuss the environmental factors that affect on operations of engineering organizations in Hong Kong, and to recognise ethics and business behaviours in conducting business. (Objective 4 and Syllabus Item 5). Categories A & B

Syllabus:
1. Introduction.
 General management concepts in organizations; functions & types of industrial organizations, structure, corporate objectives, strategy and policy
2. Industrial Management
 Roles of managers. Process of management, planning, organising, motivating, leading and controlling of social and engineering activities. Quality management and tools
3. Industrial Engineering Planning
 Project management, project specifications, scope and objectives, work breakdown structure and organizational breakdown structure. Tools that support engineering operations; scheduling, business process re-engineering, etc
4. The Management of Change
 Changes due to technical innovation, political-legal, economic and social issues. Factors that affect the execution of changes
5. Effects of Environmental Factors
 The effects of environmental factors on the operations of engineering organizations in Hong Kong, e.g. legal aspects of employment; professional codes of conduct for engineers; contracting; product liability; sources, effect and control of environmental pollutants.
Teaching and Learning Approach:
A mixture of lectures, tutorial exercises, and case studies will be used to deliver the various topics in this subject. Some of which will be covered in a problem-based format where this enhances the learning objectives. Others will be covered through directed study in order to enhance the students’ ability of “learning to learn”. Some case studies, largely based on real experience will be used to integrate these topics and thus demonstrate to students how the various techniques are inter-related and how they apply in real life situations.

Method of Assessment:
Coursework: 40% Examination: 60%
Coursework comprises assignments with individual and group components; and team work is an essential element in the Coursework assessment. All assessment components will require students to apply what they have learnt to realistic work applications.

Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: Industrial Centre Training II
Subject Code: IC367
Number of Credits: 4
Hours Assigned: 4 weeks (Year 2 Summer)

Pre-requisite: Industrial Centre Training I (IC272)
Co-requisite: nil
Exclusion: nil

Objectives:

In succession to IC272, Industrial Centre Training II provided by The Hong Kong Polytechnic University Industrial Centre focus on the training for undergraduate professional engineer in the area of electronic and information engineering. The objectives of this course are:-
1. To apply and consolidate the practical skills and best practices acquired in previous training and coalesce with academic knowledge to work on engineering projects in an industrial environment.
2. To develop the technical and managerial skills of undergraduate engineer to tackle open-ended problem with preparation to participate in engineering project in their future career.

Student Learning Outcomes:

On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the process and develop the skills of planning, market survey, and delivery of an engineering project in addition to the technical aspects.
2. Consolidate, gain confidence and demonstrate technical competence in handling engineering projects and producing prototypes for design and development in the area of electronic and information engineering.
3. Understand the importance of safety, responsibility and regulation in the practice of engineering.
4. Apply fundamental principles and knowledge in electronic and information engineering and to develop practical solutions to solve problems in the development phase of an engineering project.
5. Deploy available resource to fabricate working prototype with relevant engineering documentation under a multidisciplinary industrial environment.

Category B: Attributes for all-roundedness
6. Communicate effectively and work in harmony with other members in a team and develop leadership capability.
7. Communicate effectively using Internet.
8. Demonstrate critical and creative thinking in electronic project development and handling.
9. Practise creativity and demonstrate initiative with a learn-by-practice approach to produce solutions for open-ended problems in an engineering context.
10. Understand the importance of training and the needs for continual professional development in professional engineering career.

Syllabus:

1. IC 1103 – Integrated Training in Electronic & Information Engineering (4 weeks)
 1.1 Industrial Centre Training II takes the form of technical projects with typically 4 to 6 students in a team working in the Industrial Centre for a minimum of 4 weeks.
 - The project approach of Integrated Training II provides an arena for students to develop their personal ability and attitude in teamwork and leadership in real world industrial environment. Projects are structured so that student can bring their training, knowledge, creativity and experience together and consolidate them into one coherent activity.
 - Project work is an important and integral part in the working lives that virtually all engineers will come across at various stages in their career path. These engineering projects may include software and hardware design, planning, costing, parts manufacture, printed circuit board (PCB) and chassis assembly, testing, documentation, evaluation and presentation.
 - The team will simulate a project team or a young company being assigned the task of design and manufacture a prototype of a consumer electronic or IT product for a client. The team has to conduct a market research to come up with an appropriate design and marketing strategy. At the
end of the training period, the team has to create a Web site and present their achievement, manufacturing plan and business plan of this product.

- A professional engineer, particularly in the role of project leader, must have a sound appreciation of all these elements. By accomplishment of a project, students should be able to polish their creativity, understand and appreciate the elements, difficulties and open-ended type problems and solutions that are common in their future career as a professional engineer.

In general, the following task or activities will be required for each project group:

1. Create new equipment, product or service in the area of electronic and information engineering.
2. Review an existing equipment, design prototype, product or service in the area of electronic and information engineering and deliver an improved prototype.
3. Planning and utilize resources in a multidiscipline industrial environment and deliver the output of the project.
4. Produce engineering documentation for client.
5. Produce and present the project on the Internet for investors or prospective clients.

Method of Assessment:

The assessment is comprised of 100% continuous assessment based on the performance of project deliverables. In an industrial environment, student will experience the discipline and devotion of working condition of junior engineer. Personal ability including creativity, leadership, working attitude, courage, responsibility, problem solving power and presentation style of student will be assessed together with the technical part of the project.

Reference Book:

To be specified according to the nature and contents of individual project.
SUBJECT DESCRIPTION FORM

Subject Title: VLSI & Computer-Aided Circuit Design
Subject Code: EIE401

Number of Credits: 3
Hours Assigned: Lecture/tutorial 35 hours
Laboratory 7 hours
(Equivalent to 21 laboratory hours)

Pre-requisite: Electronic Circuits (EIE304)
Co-requisite: nil
Exclusion: nil

Objectives:
To provide students with
1. insights into the area of VLSI circuits and systems based on silicon;
2. a broad spectrum of awareness of the many facets of VLSI design using CAD tools;
3. hands-on experience on VLSI design.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the fundamentals of CMOS VLSI and associated technologies.
2. Solve problems in the design of CMOS logic circuits, with particular reference to speed and power consumption.
3. Acquire hands-on skills of using CAD tools in VLSI design.
4. Appreciate the design process in VLSI through a mini-project on the design of a CMOS sub-system.

Category B: Attributes for all-roundedness
5. Communicate effectively.
6. Think critically and creatively.
7. Assimilate new technological and development in related field.

Syllabus:
1. Overview of VLSI Design
 VLSI design methodology; functional, logic and physical design; gate arrays and standard cells, programmable logic devices; system-on-chip.
2. CMOS Fabrication and Layout
 Fabrication processes in CMOS VLSI; latch-up; characteristics of devices in VLSI; mask layout techniques and design rules.
3. CMOS Logic Circuits
 Transmission gates; static and dynamic gates and flip flops; domino logic; low power design; design for testability.
4. High Speed CMOS Logic Design
 Delay estimation and transistor sizing; device and interconnect capacitance; optimal delay design of buffers; power supply grid; clock distribution.
5. CAD Techniques in VLSI Design
 Circuit and logic simulation, mask layout, layout extraction and verification; standard cell placement and routing.
6. Sub-system Design
 Examples to illustrate sub-system design in VLSI: data path in a microprocessor, random-access-memory.

Laboratory Experiment:
1. Practice of CAD tools for VLSI design: circuit simulation, mask layout, layout extraction and verification, placement and routing.
2. Mini-project: design of a sub-system for computer or communication applications.
Method of Assessment:
Continuous assessment: 50% Examination: 50%

The continuous assessment will consist of a mini-project, a number of assignments, and two tests.

Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: Power Electronics
Subject Code: EIE402
Number of Credits: 3
Hours Assigned: Lecture/tutorial 39 hours
Laboratory 3 hours
(Equivalent to 9 laboratory hours)

Pre-requisite: Basic Electricity and Electronics I (ENG237)
Basic Electricity and Electronics II (ENG238)
Electronic Circuits (EIE304)
Co-requisite: nil
Exclusion: nil

Objectives:
To introduce the fundamental principles, concepts, techniques, methods, and circuits of power electronics and to familiarize students with the design procedures of power electronic systems.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the fundamental principles and applications of power electronics circuits.
2. Solve problems and design switching regulators according to specifications.
3. Use Computer-aided techniques for the design of power converter circuits.
4. Appreciate the latest developments in power electronics.

Category B: Attributes for all-roundedness
5. Communicate effectively.
6. Think critically and creatively.
7. Assimilate new technological and development in related field.

Syllabus:
1. Introduction to Power Electronics
 Overview of power electronics systems: applications and areas of future development.
2. Basic Switching Regulator Topologies
 Practical considerations. Merits and drawbacks.
3. State-Space Averaging and Linearization
4. Switching Regulators with Transformer Isolation
5. Feedback Control Design
6. Magnetic Components
 Inductor. Transformer. Saturation, hysteresis, and residual flux.
7. Latest Development in Power Electronics

Laboratory Experiments:
2. Design of a buck converter.
Method of Assessment:
Continuous assessment: 40% Examination: 60%

The continuous assessment consists of assignments, quizzes, and two tests.

Reference Books:
Subject Title: High Frequency Circuit Design

Subject Code: EIE403

Number of Credits: 3

Hours Assigned:
- Lecture/tutorial 39 hours
- Laboratory 3 hours
(Equivalent to 9 laboratory hours)

Pre-requisite: Basic Electricity and Electronics I (ENG237)
Basic Electricity and Electronics II (ENG238)
Electronic Circuits (EIE304)

Co-requisite: nil

Exclusion: nil

Objectives:

Designing electronic circuits in the tens and hundreds of MHz range can be a challenge because the presence of parasitics poses a lot of problems in the physical circuits. This makes designing high-frequency circuits a rather specialized subject, although much can still be resolved under the lumped circuit assumption. But as the frequency moves up to the GHz range, the use of lumped circuit models can be seriously handicapped because voltage and current change within the physical boundary of the circuit as a result of the wavelength being comparable to the dimension of the physical circuits. A different approach must be used to look at the problem. This course will look mainly at circuit design in the tens to hundreds MHz range and will touch upon some basics for the GHz range design.

Student Learning Outcomes:

On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the characteristics of transistor devices at high frequencies
2. Analyze high-frequency roll-off problems in transistor amplifiers
3. Design amplifier circuits for high-frequency applications
4. Design matching filters
5. Solve design problems using Smith charts, e.g., transmission line and antenna matching
6. Understand the stability problems in power amplifiers

Category B: Attributes for all-roundedness
7. Communicate effectively
8. Think critically and creatively
9. Assimilate new technological development in related field

Syllabus:

1. Analogue Circuit Fundamentals

2. Radio Frequency Circuit Design

3. High-frequency Filter Design
 - Operational Transconductance Amplifier (OTA or gm). OTA design principles. BJT and MOS OTAs. Gm-C filter design principles. Method of signal flow graphs.
4. **Distortion Analysis**

5. **Impedance Matching**

6. **Transmission Line Matching**

7. **Power Amplifier Design**

Mini-project:
Each student is required to complete a mini-project on either one of the following topics:

Topic 1: High frequency roll-off of transistor amplifiers

Topic 2: Design of matching circuits

Topic 3: Transmission line matching

Method of Assessment:
Continuous assessment: 40% Examination: 60%

The continuous assessment consists of assignments, mini-projects, and a test.

Textbooks:

Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: Digital Signal Processing
Subject Code: EIE413
Number of Credits: 3
Hours Assigned: Lecture/tutorial 39 hours
Laboratory 3 hours
(Equivalent to 9 laboratory hours)

Pre-requisite: Mathematics I (AMA201)
Mathematics II (AMA202)
Linear Systems (EIE312)

Co-requisite: nil
Exclusion: nil

Objectives:
This is an essential subject to provide fundamental signal processing techniques important to many communications and multimedia subjects. Both theory and practical realisation are stressed. After completion of the subject, the student should be able to understand the design principles and the implementation of digital filters and DFT/FFT, and be able to make use of random signal processing concepts and wavelets to perform some simple applications.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the theories behind and to be able to realize filter equations and DFF/FFT for practical applications.
2. Design FIR/IIR filters on paper by using MATLAB, and implement the design using a programming language and/or digital processor.
3. Understand the basic theory of wavelet transform and the concepts of using simple wavelets for data compression and feature extraction.
4. Understand the importance of random signal processing in DSP, and its application on statistical measures and data modelling.
5. Possess basic background in the DSP area sufficiently for supporting subjects such as: communication principles, computer networks, speech processing, image processing, multimedia, and video technology.
6. Possess necessary background for advance studies in DSP, especially for taking the subject Advanced Digital Signal Processing, or other multimedia signal processing subjects.

Category B: Attributes for all-roundedness
7. Present ideas and findings effectively.
8. Think critically.
9. Learn independently.
10. Work in a team and collaborate effectively with others.

Syllabus:
1. Revision on the Discrete-time Systems and General Realization Techniques
 1.1 Basic definition of discrete-time signal. Sampling of continuous-time signal. Time invariance, causality, linearity, convolution. The z-transform and its inverse, delay property and its meaning in the time domain, frequency response and stability.
 1.2 Realization of digital filter structures, direct realization, canonic form, cascade and parallel realization of digital systems.

2. Design of Infinite Impulse-response (IIR) and Finite Impulse-response (FIR) Digital Filters
 2.2 FIR filter analysis, Fourier series approach, windowing, Gibbs phenomenon, commonly used windows, concept of linear phase, frequency transformation, low-pass, band-pass, high-pass filters and filter band design.
3. **Discrete Fourier Transform and Convolution**
 3.1 Convolutions and its applications, circular convolution, convolution by section, overlap-add method and overlap-save method.
 3.2 Fourier series and continuous-time Fourier transform. Discrete Fourier series and discrete Fourier transform (DFT), properties of the DFT, Fourier analysis using the DFT, convolution theorem, the fast Fourier transform (FFT) algorithm and implementation of the FFT.

4. **Wavelets**
 4.1 Short-time Fourier transform, continuous wavelet theory, dyadic structure, discrete wavelet transform, wavelet and scaling functions, multi-resolution analysis, sample applications of wavelet transform.

5. **Random Signal Processing**
 5.1 Revision on Random Processes, cross- and auto-correlations, bias and consistence. Power spectrum estimation, non-parametric and parametric approaches, AR, ARMA models.

6. **Advanced DSP and Applications**
 To discuss not less than one of the following topics,
 6.1 Architectures of digital signal processors and DSP chips.

Laboratory Experiments:
The student will carry out at least three laboratory exercises on the topics below:
1. Laboratory 1: MATLAB for DSP laboratory exercises.
2. Laboratory 2: FIR filter analysis and design.
3. Laboratory 3: IIR filter analysis and design.
4. Laboratory 4: Properties of DFT and the fast Fourier transform.
5. Laboratory 5: Wavelet properties and its applications.

Method of Assessment:
Continuous Assessment: 40% Examination: 60%

Textbooks:

Reference Books:
Subject Title: Computer Architecture and Systems
Subject Code: EIE414
Number of Credits: 3
Hours Assigned: Lecture/tutorial 37 hours
Laboratory 5 hours
(Equivalent to 15 laboratory hours)

Pre-requisite: Computer System Fundamentals (EIE311)
Co-requisite: nil
Exclusion: nil

Objectives:
To provide students with
1. concepts and design techniques of high performance computer architectures and
2. techniques to analyse performance in time domain.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Appreciate the techniques deployed in the design of modern high performance computers.
2. Develop analytical ability in the concurrency domain.
3. Identify and resolve problems arising from concurrent hardware functional units.
4. Identify and resolve problems arising from the concurrent execution of cooperating software structures.
5. Critically evaluate the performance of computers and real-time embedded systems.

Category B: Attributes for all-roundedness
6. Present ideas and findings effectively.
7. Think critically.
8. Learn independently.
9. Work in a team and collaborate effectively with others.

Syllabus:
1. Taxonomy of Computer Architectures
 1.1 Revision on the classifications of computer architectures: ISA and HAS, Von Neumann, RISC and CISC.
 1.2 Performance issues, examples of evaluation using simulators.

2. Memory System
 2.1 Memory system hierarchy: locality principles; cache organizations, replacement policies and write policies; virtual memory, disk latencies and thrashing.
 2.2 Memory management: Logical and physical space; address translation, protection and sharing; paging and segmentation; replacement policies.

3. Pipelined Processors
 3.1 Pipelined ILP organization: classifications, instruction pipeline, arithmetic pipelines and pre-fetch buffers.
 3.2 Dependencies: data dependencies, control dependencies and resource dependencies.

4. Superscalar Processors
 4.1 Concurrent instruction execution: decode, issue and dispatch stages; pre-decoding; out-of-order issue and dispatch; operand availability; shelving; register renaming.
 4.2 Speculative execution: preserving processor consistency; the reorder buffer.
 4.3 Branch processing: detection, speculation and recovery schemes.

5. Concurrent Real-Time Systems
 5.1 Mutual exclusion and process synchronization.
 5.2 RTOS: Tasks and scheduling; inter-task communication methods; events; memory management user-ISR;
 5.3 RTOS services: Case study e.g. uC/OSII.
6. Application-Oriented Processors for Advanced Embedded Systems
 6.1 High performance embedded processors e.g. ARM
 6.2 Embedded DSP and media processors e.g. TMS 320Cxxxx & Nexperia

7. Multiprocessor Systems
 7.1 Cache coherence and memory consistency.
 7.2 Multiprocessor bus; Case study e.g. PCI.

Laboratory Experiments:
1. Superscalar simulation tool.
2. Tracing the operation of superscalar CPU by simulation.
3. Multitasking under a RTOS.
4. Handling user’s hardware interrupts under a RTOS.

Method of Assessment:
Continuous Assessment: 40% Examination: 60%

The continuous assessment will consist of assignments, tests, laboratory work and a mini-project.

Reference Books:
SUBJECT DESCRIPTION FORM

Subject Title: Multimedia Technology
Subject Code: EIE415

Number of Credits: 3
Hours Assigned: Lecture/tutorial 37 hours
Laboratory 5 hours
(Equivalent to 15 laboratory hours)

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
This subject provides students with thorough understanding of multimedia technologies. After the completion of the subject, the student should be able to appreciate a wide range of techniques and standards adopted in the multimedia industry.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the requirements of a multimedia system and the formats of different multimedia signals.
2. Understand the different multimedia standards and the technologies.
3. Design simple systems for multimedia retrieval and management.
4. Perform multimedia authoring, and to process and integrate different types of signals to form multimedia presentations.
5. Understand, describe, the technologies for streaming multimedia content over the Internet.
6. Appreciate the architectures and technologies of various multimedia systems, such as Video-on-Demand (VoD), multimedia conferencing, etc.

Category B: Attributes for all-roundedness
7. Communicate effectively.
8. Think critically and creatively.

Syllabus:
1. Introduction to Multimedia Systems
 Perspective of multimedia computing and communications, review of the key enabling technologies, overview of multimedia system requirements and multimedia software tools.
2. Multimedia Signal Representations
 Basics of audio/image/video file formats, introduction to MIDI (Musical Instrument Digital Interface), basics of digital video and color processing.
3. Multimedia Standards
4. Multimedia Information Indexing and Retrieval
 MPEG-7, Content-based retrieval (CBR) in image database, some existing CBR systems/applications. Digital libraries.
5. Optical Storage Media
 CD-Audio, CD-ROM, and Digital Video Disc (DVD).
6. Multimedia Authoring and Integration
 Multimedia authoring: authoring metaphors, multimedia production and presentation, SMIL: concept, structure, timelines, synchronization, implementation.
7. Multimedia Communications
 Quality of Service (QoS) requirements for multimedia communications, traffic modelling of multimedia sources, multiplexing, loss concealment, transport protocol support for multimedia communications. Multimedia on Internet: resource reservation protocol (RSVP), MBone.
8. **Case Studies**

Multimedia conferencing, video-on-demand (VOD), set-top box and interactive TV, digital TV and high definition TV (HDTV).

Laboratory Experiments:
1. Analysis of MPEG video coding
2. Audio signal processing
3. Developing simple multimedia applications using SMIL
4. Multimedia production
5. Multimedia integration

Method of Assessment:
Continuous assessment: 40% Examination: 60%

The continuous assessment will consist of a number of assignments, laboratory reports, and two tests.

Reference Books:
Subject Title: Distributed Systems and Network Programming

Subject Code: EIE424

Number of Credits: 3

Hours Assigned: Lecture/tutorial 36 hours
Laboratory 6 hours
(Equivalent to 18 laboratory hours)

Pre-requisite: Object Oriented Design and Programming (EIE320)

Co-requisite: nil
Exclusion: nil

Objectives:

This subject will provide students with the principles and practical programming skills of developing distributed systems. It enables students to master the development skill for providing distributed services on the Web. Through a series of lab exercises, students will have the chance of developing interoperable and distributed Web applications.

Student Learning Outcomes:

On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the enabling technologies for building distributed systems.
2. Understand the different components for developing Web Services.
3. Set up and configure a standard Web Service system and develop simple Web Service applications.

Category B: Attributes for all-roundedness
4. Think critically.
5. Learn independently.
6. Work in a team and collaborate effectively with others.
7. Present ideas and findings effectively.

Syllabus:

1. Introduction to Distributed Systems
 1.1 Characteristics. Design goals. Architecture examples.

2. Enabling Tools and Techniques for Building Distributed Systems
 2.1 Networked Computing
 TCP/IP protocol suite. Socket programming.
 2.2 Component-based Software Development
 Component models. JavaBeans; CORBA; Remote Method Invocation (RMI); OM/DCOM; Enterprise JavaBeans (EJB).
 2.3 Extensible Markup Language (XML)
 XML Markup; parser; CDATA sections; XML namespaces. Document Type Definition (DTD); well-formed XML documents; document type declaration; element of type declarations; attribute declarations.

3. Distributed Services on the Web: Web Services
 3.1 Introduction to Web Services.
 3.2 Simple Object Access Protocol (SOAP): SOAP specification; message processing; use of namespaces.
 3.3 Web Services Description Language (WSDL): Role of WSDL in Web services, WSDL documents, remote web-services invocation using WSDL.
 3.4 Universal Description, Discovery and Integration (UDDI): role of UDDI in Web services; UDDI registries; discovery technologies.
Laboratory Experiment:

Practical Works

1. Remote Method Invocation (RMI)
2. Extensible Markup Language (XML)
3. XML-RPC
4. SOAP
5. WSDL
6. UDDI

Method of Assessment:

Coursework: 40% Examination: 60%

Textbooks:

Reference Books:

SUBJECT DESCRIPTION FORM

<table>
<thead>
<tr>
<th>Subject Title:</th>
<th>Video, Image, and Audio Processing</th>
<th>Subject Code:</th>
<th>EIE425</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Credits:</td>
<td>3</td>
<td>Hours Assigned:</td>
<td>Lecture/tutorial 39 hours Laboratory 3 hours (Equivalent to 9 laboratory hours)</td>
</tr>
<tr>
<td>Pre-requisite:</td>
<td>Linear Systems (EIE312)</td>
<td>Co-requisite:</td>
<td>nil</td>
</tr>
<tr>
<td>Exclusion:</td>
<td>nil</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objectives:
To provide a broad treatment of the fundamentals of speech, image, audio and video processing.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the fundamentals of speech, image, audio and video signal processing and associated techniques.
2. Solve practical problems with some basic speech, image, audio and video signal processing techniques.
3. Design simple systems for realizing some multimedia applications with some basic speech, image, audio and video signal processing techniques.

Category B: Attributes for all-roundedness
4. Present ideas and findings effectively.
5. Think critically.
7. Work in a team and collaborate effectively with others.

Syllabus:

1. **Speech processing**
 1.1 Physiology of speech generation: characteristic of speech sounds; glottal excitation; speech production models: discrete-time speech production model; discrete-time filter model for speech production; source excitation model.
 1.2 Linear prediction analysis: All-pole models; least-squares estimation; spectral matching; spectral envelopes; applications of LP analysis.
 1.3 Speech coding: Coder’s attributes; waveform coding; vocoders; analysis-by-synthesis coding; code-excited linear predictive vocoder; regular pulse-excited LPC.

2. **Image processing**
 2.1 Fundamentals of digital image: Digital image representation and visual perception, image sampling and quantization.
 2.2 Image enhancement: Histogram processing; Median filtering; Low-pass filtering; High-pass filtering; Spatial filtering; Linear interpolation, zooming.
 2.3 Image coding and compression techniques: Scalar and vector quantizations; Codeword assignment; Entropy coding; Transform image coding; Wavelet coding; Codec examples.
 2.4 Image analysis and segmentation: Feature extraction; Histogram; Edge detection; Thresholding.
 2.5 Image representation and description: Boundary descriptor; Chaincode; Fourier descriptor; Skeletonizing; Texture descriptor; Moments.

3. **Audio processing**
 3.1 Fundamentals of digital audio: Sampling; Dithering; Quantization; psychoacoustic model.
 3.2 Basic digital audio processing techniques: Anti-aliasing filtering; Oversampling; Analog-to-digital conversion; Dithering; Noise shaping; Digital-to-analog Conversion; Equalisation.
 3.3 Digital Audio compression: Critical bands; threshold of hearing; Amplitude masking; Temporal masking; Waveform coding; Perceptual coding; Coding techniques: Subband coding and Transform coding; Codec examples.
4. **Video processing**
 4.2 Basic digital video processing techniques: Motion estimation; Interframe filtering; Motion-compensated filtering; Error concealment.
 4.3 Video coding techniques: Temporal redundancy; Spatial redundancy; Block-based motion estimation and compensation; Coding techniques: Model-based coding, Motion-compensated waveform coding; Codec examples.

Laboratory Experiments:
1. Audio compression
2. Speech signal analysis
3. Psychoacoustic behavior
4. Motion estimation and its application in video coding
5. Image processing techniques
6. Image compression

Method of Assessment:
Continuous Assessment: 40% Examination: 60%

The continuous assessment will consist of a number of assignments, laboratory reports, and two tests.

Textbooks:

Reference Books:
Subject Title: Honours Project
Subject Code: EIE433
Number of Credits: 6

Hours Assigned:
- Structured Study: 84 hours
- Self-work/Guided Study: 168 hours
 Total: 252 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
Engineering is the science of the applying scientific principles and technology to improve human life. This may take the form of invention, design, implementation, so on and so forth. The objective is to come up with solutions to existing problems while considering various constraints. Hence the students studying in a curriculum will be most benefited from doing a project in order to have the chance to practise hands-on application of the knowledge the student has learned throughout the curriculum, while producing something useful or valuable. Against this background, there is a final year project (FYP) component in the curriculum with the objectives:
1. To provide the opportunity to the student so that he/she can apply what he/she has learnt in previous stages in a real-life engineering context.
2. To enable the student to acquire and practise project management skills and discipline while pursuing the FYP.
3. To enable the student to apply engineering knowledge in analysis of problems and synthesis of solution while considering various constraints.

Student Learning Outcomes:
On successful completion of the final year project, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand, take up, and master the basic knowledge and skills related to the specific project.
2. Understand the background, the requirements, objectives, and deliverables to be produced.
3. Integrate and apply knowledge learnt in present and previous stages (vertical integration) and across different subjects (horizontal integration).
4. Apply various professional skills in electronic and information engineering to achieve the objectives of the project.
5. Learn to use new tools and facilities, and to gather new information, for the conduction of the project.

Category B: Attributes for all-roundedness
6. Work under the guidance of a supervisor while exercising self-discipline to manage the project.
7. Review critically the student’s own achievement and other related works.
8. Communicate effectively with related parties (supervisor, peers, vendors).
9. Work with others (team partners, outsource company, technical support staff) collaboratively.
10. Realize different constraints, and to make appropriate compromise, when designing a solution to an engineering problem.
11. Disseminate effectively the results and knowledge learnt in the project.
12. Transfer the knowledge and skills learnt in the project.

Syllabus:
The progression of the project will be guided by a framework, which consists of the following indicative stages. The specific details will vary from project to project.

Project Specification
In this stage, the student will work in conjunction with the project supervisor to draw up a concrete project plan specifying at least the following:
1. Background of the project
2. Aims and objectives
3. Deliverables
4. Methodology to be adopted

5. Schedule

Project Execution

This is the major part of the project. After the specification is done, the project will be pursued so that the objectives are to be met; the deliverables are to be produced in accordance with the schedule. The student and the project supervisor will meet constantly to discuss the progress. In particular the following should be demonstrated:

1. Adherence to the schedule
2. Achievement of objectives by the student’s work
3. Initiatives of the students to work, design, and to solve problems
4. Inquisitiveness of the student (e.g. to probe into different phenomena or to try different approaches)
5. Diligence of the students to spend sufficient effort on the project
6. Systematic documentation of data, design, results, …etc. during the process of working out the project

Project Report

After the project is finished, it is important that the student can be able to disseminate the results so that the results can be reviewed by others. Through this dissemination process, project achievements can be communicated, experience can be shared, knowledge and skills learnt can be retained and transferred. The following elements will be important:

1. Project log book
2. Project report (hardcopy and softcopy)
3. Presentation
4. Performance in a Question-and-Answer session

Method of Assessment:

Continuous Assessment: 100%

Reference Books:

To be specified by the project supervisor for each project.
SUBJECT DESCRIPTION FORM

Subject Title: Telecommunication Networks
Subject Code: EIE443
Number of Credits: 3
Number of Hours Assigned: Lecture/tutorial 39 hours, Laboratory 3 hours (Equivalent to 9 laboratory hours)

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
This subject aims at introducing to the students the knowledge about the telecommunication industry: its services and market, the theoretical basis about performance (queuing theory) and operation (multiplexing, switching, routing, and signaling).

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Describe and relate fundamentals of telecommunication networks and associated technologies.
2. Apply the principles of queuing theory in evaluating the performance of telecommunication networks.
3. Solve problems and design simple systems related to telecommunications.
4. Appreciate the reasons for switching, and the relative merits of the possible switching modes, e.g. packet and circuit switching
5. Understand the principles of the internal design and operation of communication switches, and the essence of the key protocols that are used with switched networks

Category B: Attributes for all-roundedness
6. Communicate effectively
7. Think critically and creatively
8. Assimilate new technological development in related field

Syllabus:
1. Overview of Telecommunication Networks and Industry
 1.1 Trends, technologies and network elements in telecommunication networks.
 1.2 Telecommunication industry in Hong Kong: Regulatory bodies, major telecommunication operators, major telecommunication services and activities.
2. Queuing Theory and Traffic Engineering
 2.1 Poisson source characteristics.
 2.2 Analysis of different queuing systems: M/M/1, M/M/2, M/M/N/N queues.
 2.3 Traffic engineering: Erlang’s formula, blocking probability.
3. PCM and Digital Multiplexing Hierarchy
 3.1 Telecommunication network hierarchy.
 3.2 Digital multiplexing hierarchies: T1, E1, T2, and T3 carrier systems.
 3.3 Plesiochronous and synchronous multiplexing, SONET and SDH transmission systems.
4. Switching Systems Design
 4.1 Switching fabrics: Switch architecture, performance evaluation; Time division switches: shared memory switch, time-slot-interchange switch; Space division switches: Crossbar, Clos and Banyan.
 4.2 Traffic management and scheduling in a switch.
 4.3 Optical switching: wavelength division multiplexing (WDM)
 4.3 Signalling principles: SS7 signalling and public telephone networks.
Laboratory Experiments:
1. Poisson source properties and their characterization.
2. Simulation study on queueing properties.

Method of Assessment:
Continuous assessment: 40% Examination: 60%

The continuous assessment will consist of a number of assignments, quizzes and two tests.

Reference Books:
Subject Title: Mobile Communications

Subject Code: EIE447

Number of Credits: 3

Hours Assigned: Lecture/tutorial 36 hours
Project/presentation 6 hours
(Equivalent to 18 laboratory hours)

Pre-requisite: Communication Fundamentals (EIE331)
Co-requisite: nil
Exclusion: nil

Objectives:
To introduce the fundamental design principles and issues in mobile communications.
To enable student to understand the basic features of mobile communication systems and digital trunked radio: GSM, CDMA (IS-95) and TETRA.

Student Learning Outcomes:
On successful completion of this subject, the students will be able to:

Category A: Professional/academic knowledge and skills
1. Recognize the frequency spectra allocated for mobile communications in Hong Kong
2. Understand the basic network architecture of a mobile communication system.
3. Realize the importance of frequency-reuse concept in mobile communications and to be able to analyze its effect on interference, system capacity and grade of service.
4. Understand the different types of large-scale and small-scale fading channel models and to be able to analyze their influence on the performance of a mobile communication system.
5. Appreciate various multiple access techniques used in mobile communications and their pros and cons.
6. Recognize the relative pros and cons of various digital modulation schemes and to be able to select the appropriate modulation scheme under a given channel environment.
7. Understand the basic features of mobile communication systems and digital trunked radio: GSM, CDMA (IS-95) and TETRA.

Category B: Attributes for all-roundedness
8. Coordinate work among group members and to work as a team.
9. Present ideas and results in front of an audience.

Syllabus:
1. Introduction to Cellular Radio Systems
 System planning. Cellular structure, concepts of frequency reuse and cells splitting. Frequency planning and spectrum allocation. Co-channel interference, adjacent channel interference. Interference and system capacity. Hand-off mechanism. Multiple access techniques: Frequency-division multiple access (FDMA), Time-division multiple access (TDMA) and Code-division multiple access (CDMA).

2. Mobile Radio Propagation

3. Mobile Radio Channel Characterisations
 Lognormal, Ricean and Rayleigh fading models. Doppler frequency, delay spread, coherence bandwidth, level crossing rate. Characterisation of multipath phenomena. Fading effects due to multi-path time delay spread. Fading effects due to Doppler spread. Simulation of Rayleigh fading channel.

4. Signal Transmission over Mobile Radio Channels
 FSK, BPSK, PSK, DPSK, QPSK, OQPSK, p/4 DQPSK, MSK and GMSK. Performance of FSK, PSK, and GMSK in Rayleigh fading channel.
5. **Current Mobile Communication Systems ad Digital Trunked Radio**

6. **Evolution from 2G to 3G**
 Path migration from 2G to 3G mobile systems.

Project:
1. To study the frequency reuse patterns employed by mobile operators in Hong Kong along MTR/KCRC lines and to study the statistics properties of the received signal power in a mobile environment.

Method of Assessment:

Continuous assessment: 40%
Examination: 60%

The continuous assessment will consist of a number of assignments, two open-book tests, one project report and one presentation.

The examination will be an open-book type.

Reference Books:

3. Terrestrial Trunked Radio (TETRA); Voice plus Data (V+D), Designers’ guide; Part 1: Overview, technical description and radio aspects, ETSI ETR 300-1.
Subject Title: Society and the Engineer
Subject Code: ENG403
Number of Credits: 2
Hours Assigned:
Lecture/tutorial 24 hours
Tutorial 4 hours
Total 28 hours

Pre-requisite: nil
Co-requisite: nil
Exclusion: nil

Objectives:
This subject is designed for engineering students as a complementary subject about the role of the professional engineer in practice and their responsibilities towards the profession, colleagues, employers, clients and the public. The objectives of the subject are to enable students to:
5. Appreciate the historical context of modern technology and the nature of the process whereby technology develops.
6. Understand the social, political, economic responsibility and accountability of a profession in engineering and the organizational activities of professional engineering institutions.
7. Appreciate the relationship between technology and environment and the implied social costs and benefits.
8. Be aware of the short-term and long-term effects on the use of technology relating to safety, health and welfare aspects.
9. Observe the professional conduct, the legal and more constraints relating to various engineering aspects.

Student Learning Outcomes:
Category A: Professional/academic knowledge and skills
4. Describe different types of intellectual protection and the evaluate impacts of modern technology on education, business and societal development [1,5].
5. Explain the importance of professional conduct and responsibilities in various engineering activities [2,5].
6. Identify the effects on the use of technology relating to health and safety, environment and welfare of the public in real life cases [3,4].
7. Interpret the academic, training and professional experience requirement of local and overseas of professional engineering institutions. [2]

Category B: Attributes for all-roundedness
5. Discuss, in a team setting, the social problems related to engineers and present the findings. [2, 3, 4,5].

Syllabus:
2. Environmental protection and related issues. Role of the engineer in energy conservation, ecological balance and sustainable development.
3. The outlook of Hong Kong’s industry, its supporting organizations and impact on development from the China Markets.
5. The Professional Institutions: both local and overseas. Training of engineers.
6. Professional ethics, bribery and corruption including the work of the ICAC. Social responsibilities of engineers.
7. Intellectual property right such as patents and copyright protection. Contract law for engineers.
Method of Assessment:
Continuous Assessment: 55% Examination: 45%

Reference Book: